

Problem Description

Traditional SCA tools (JFrog Xray) produce **hundreds** to **thousands** of vulnerability findings.

- A large portion of findings are **irrelevant** to real application use based on context

Goal: Reduce SCA Noise & Save Engineering Time

While preserving real security threats

Key Features

- Two-level AI filtering (context + security)
- Context-aware relevance scoring (0-10)
- Deterministic rule-based filtering
- Clear prioritization: must-fix vs. low-impact
- Fast & scalable backend (FastAPI)

Project Status & Usage

1. **Upload:** SCA (Xray) export & app source code.
2. **Process:** Run AI & rule-based analysis.
3. **Review:** Get prioritized findings & summaries.

Functional prototype validated on JFrog Xray for developers, security engineers, and tech management.

Main Idea

Noise Buster combines traditional SCA output with **source code context** and **multi-level AI** analysis to determine which vulnerabilities truly matter for a specific application.

Instead of asking „**Is this vulnerability known?**“

Noise Buster asks:

- „**Is this vulnerability relevant in this application?**“

Architecture

User Interface

The user interface screenshot shows the following sections:

- OVERVIEW**: Analysis summary showing Total findings (728), Critical (73), High (230), and a Filtering stats section showing Original findings (828) and Noise removed (100).
- Severity distribution**: A bar chart showing the distribution of findings by severity: Critical (~50), High (~200), Medium (~150), and Low (~100).
- Findings to Address**: A table listing findings with columns: CVE, Package, Version, and Severity. Some entries include XRAY-99051, debiantfbapache2-mod-ph7.0, < 7.0.33-0+deb9u8, Medium.