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Abstract: To fill a gap in large-scale realistic Petri net models, meant for formal methods design 
and corresponding software testing, generators of Petri nets were presented. A Petri net generator is 
a program, developed on the parametric description of a Petri net, which produces a model having 
required characteristics, for instance, size. The technique of generators development was described 
on an example of computing grid model represented either in logical or in graphical format. 
Generators were successfully applied for testing plug-ins for simulating system Tina, verification of 
Ethernet protocols, and analysis of computing grids. Modeling of manufacturing systems, business 
processes and concurrent programs are prospective application areas of the generators. 
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1. Introduction 
Petri nets find wide application in automated manufacture [1,2], business [3], telecommunication [4] 
and networking [5], computing [6]. But the majority of studied in literature Petri net examples [1-7] 
are rather simplified models of real-life systems and processes. A certain gap is formed between 
large-scale nets, employed in real-life projects, and illustrative examples, roaming among articles and 
monographs. Moreover, various simulating systems [7], which are counted in dozens and hundreds, 
are tested and presented on simplified examples of nets. Thus, there is a definite deficiency of the both 
realistic models and simulating systems which are able to analyze large-scale nets in admissible time. 
In many cases, detailed models, close to enterprise-class specifications, are a trade secret and 
simulating systems, which are able to analyze them, are spread on commercial ground. 

So, certain difficulties arise, when developing formal methods of Petri nets analysis and the 
corresponding software, which are induced by the lack of actual nets. In many cases, the application 
of random Petri nets does not give the appreciated result, since artificial systems posses a series of 
peculiarities, for instance, are rather good decomposable into functional subnets (clans) [5] while 
random nets are close to indecomposable.  

A demand is formed for a library of large-scale Petri nets, which are either models or 
specifications of real-life systems, as well as for facilities of automated constructing (synthesis) of 
specific Petri nets with given characteristics: number of vertices, density and localization of arcs, 
connectivity and so on. Owing to the lack of appropriate actual nets, it is difficult to formulate a set of 
characteristics and their ranges for various standard models: a parallel program; a computing, 

                                                        
1  Described models and programs are put on web-site http://daze.ho.ua. 
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production, transport system etc. While there is no objective precondition for solving general tasks of 
Petri nets synthesis, it is possible to construct special generators of Petri nets for separate application 
domains.  

The paper represents, in essence, a case study of a Petri net generator construction for modeling 
computing grids [8] but the described technique could be employed in wide range of Petri net 
application domains, including automated manufacture, business processes and programming.  

2. Historical Notes and Formats of Files 
During development of plug-ins for known simulating system Tina [9,10], named Deborah and 
Adriana [5] and destined for Petri nets decomposition into clans and compositional calculation of 
invariants correspondingly, software generators of Petri nets (fig. 1) were applied. They produced 
large-scale Petri nets which were thereafter used as tests. These nets had the structure of a simple 
chain, simple loop, and a sequence of connected basic fragments. Thus, the possibility of testing 
program modules on nets with dozens of thousands vertices was provided. 
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Figure 1 General scheme of a Petri nets generator operation 

Analogous generators were used for verification of Ethernet protocols [5] and analysis of 
computing grids [11,12] with the aim of creating inductive base for generalizing obtained results on 
structures of an arbitrary size [13]. 

Remind that, Petri net is bipartite directed graph with a dynamic process defined on it [1]. One 
part of vertices is named places and drawn as circles, another part of vertices is named transitions and 
drawn as bars (rectangles), arcs could be multiple and their multiplicity is represented by integer 
numbers. Dynamic elements are named tokens and drawn as dots; they are situated inside places and 
move within net. 

Simulating system Tina [9,10] accepts two formats of files describing a Petri net: logical (.net) 
and graphical (.ndr). For constructing generators either of formats could be used. Since for big Petri 
nets their visual representation becomes inessential, in the present paper, logical format is employed 
substantially. The further check visualization of a Petri net is done by embedded facilities of Tina that 
provide automatic constructing files with graphical format (drawing net).  

A file with logical format (.net) contains an abstract description of a Petri net without 
information regarding its visual representation. Petri net graph is described as a list of transitions and 
their input and output arcs; initial marking is described as a list of places with values of their marking. 
Besides, Tina employs other information such as auxiliary labels of vertices, types of arcs, transitions’ 
priorities and times of transitions’ firing. This information is not used in the present work as far as a 
classical Petri net is generated, namely its graph required for structural analysis via calculation of 
places’ and transitions’ invariants. In the simplified form, the file format is described as follows 
tr <t-name> <p-name>[‘*’<weight>],… -> <p-name>[‘*’<weight>],… 
… 
pl <p-name> (<marking>) 
… 
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net <net-name> 
Transition description begins with reserved word “tr”; then the list of transition’s incoming arcs 

follows, and after a delimiter “->” the list of outgoing arcs follows. An arc is described by a place 
name and arc’s multiplicity (weight) indicated after a delimiter “*”, multiplicity equal to unit is 
omitted. Compound names of vertices are parenthesized in curly brackets. An example of file is 
shown in Listing 2. 

3. Parametric Model of a Square Grid 
Let us study the technique of Petri nets generators construction on the example of an open square 
computing grid model [11,12]. Grid computing [8] represents a distributed computing taken to the 
next evolutionary level with the goal to create the illusion of a simple yet large and powerful self 
managing virtual computer out of a large collection of connected heterogeneous systems sharing 
various combinations of resources aimed for solving large-scale practical tasks, weather forecast, for 
instance. 

Grid node is a generalized device that implements processing and forwarding of packets. It 
contains a few ports; each port work in full duplex mode providing a separate independent channel for 
receiving and transmitting packets. Packets forwarding is based on the store-and-forward principle: 
arrived packed is stored into internal buffer and then forwarded to the destination port. The parametric 
description of a grid node jiR ,  model has the form (1); its graphical representation is shown in 
fig. 2. 

( )
( ) 













=











≠=→

→
4,1,

,4,1,,,:
,,:

,
u

uvvpilpbpblpiti
pblpopolpbto

uvuvu

uuuu  (1) 



© 2014 Academic Research Centre of Canada 

~ 15 ~ 

 

Figure 2 Grid node model 

The transitions are the following: uto  – move a packet from the internal buffer to the port  u  
buffer, vuti ,  – forward a packet from port u  input buffer to the internal buffer partition of port v .  

The places are the following: upi  – buffer of the port u  input channel, upil  – buffer size of the 
port u  input channel, upo  – buffer of the port u  output channel, upol  – buffer size of the port 

u  output channel, upb  – internal buffer partition for storing packets forwarded to the port u , pbl  

– the internal buffer size. Thus, the internal buffer is represented by five places: 4,1, =upbu  and 
pbl . The packets forwarding to the arrival port is not allowed. Each move of a packet within device 

model is accompanied with increment/decrement of available buffer size which is measured in 
number of packets. Contact places upi , upil , upo , upol  provide the composition of a grid. 

To compose a square grid, nodes are situated within a square matrix and enumerated using the 
upper pair of indices ),( ji  which specify the location of a device jiR ,  within grid. The 
composition of a grid is done via merging (fusing) contact places situated on the square sides of 
neighbor devices (fig. 3). Ports’ enumeration in fig. 2 provides merging an input channel of a port 
with corresponding output channel of a port of a neighbor device and vice versa. The resulting Petri 
net is represented in parametric form (2); parameter k  specifies the size of the grid. 
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The composition of the grid uses names of left and upper ports only (4 and 1) that is why contact 
places with port numbers 2 and 3 do not appear in (2). For instance, transitions of the third port are 
described as jijijijiji pblpipbpilto ,,1

1
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3 ,,: >−  according to (1). 
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Figure 3 Composition of the open square grid model of size 2 

4. Software Implementation of a Generator 
The parametric description of grids via the form (2) is a source data for software implementation of 
Petri net generators. The generator of the open square grid models in programming language C is 
shown in Listing 1. The value of parameter k  of the square grid size is inputted from the command 
line as argv[1]. 

Then, on each of used in (2) variables ji, , the corresponding loop is organized; because of 
small range of variable v , as an alternative to additional loops, the direct enumeration of all variants is 
employed. For printing by the program, the notation of net elements’ names is modified avoiding 
subscript and superscript symbols; grid node index is written as a suffix in TEX-like notation: the 
lower index – after underscore character “_” and the upper index – after hat character “^”. For 
instance, 7,5

3,1ti  looks like {ti_1,3^5,7}. 
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/* generate open square grid on plane */ 
 
#include <stdio.h> 
 
main( int argc, char * argv[] ) 
{ 
 int k,i,j; 
 
 if( argc < 2 ) 
 { 
   printf("*** USAGE: g2o k\n"); 
   return 2; 
 } 
 else k = atoi( argv[1] ); 
 
 for(i=1; i<=k; i++) 
   for(j=1; j<=k; j++) 
   { 
     printf("tr {to_1^%d,%d} {pol_1^%d,%d} {pb_1^%d,%d} ->  

{po_1^%d,%d} {pbl^%d,%d}\n", i,j, i,j, i,j, i,j, i,j ); 
     printf("tr {ti_1,2^%d,%d} {pi_1^%d,%d} {pbl^%d,%d} ->  

{pil_1^%d,%d} {pb_2^%d,%d}\n", i,j, i,j, i,j, i,j, i,j ); 
     printf("tr {ti_1,3^%d,%d} {pi_1^%d,%d} {pbl^%d,%d} ->  

{pil_1^%d,%d} {pb_3^%d,%d}\n", i,j, i,j, i,j, i,j, i,j ); 
     printf("tr {ti_1,4^%d,%d} {pi_1^%d,%d} {pbl^%d,%d} ->  
  {pil_1^%d,%d} {pb_4^%d,%d}\n", i,j, i,j, i,j, i,j, i,j ); 
     printf("tr {to_4^%d,%d} {pol_4^%d,%d} {pb_4^%d,%d} ->  

{po_4^%d,%d} {pbl^%d,%d}\n", i,j, i,j, i,j, i,j, i,j ); 
     printf("tr {ti_4,1^%d,%d} {pi_4^%d,%d} {pbl^%d,%d} ->  

{pil_4^%d,%d} {pb_1^%d,%d}\n", i,j, i,j, i,j, i,j, i,j ); 
     printf("tr {ti_4,2^%d,%d} {pi_4^%d,%d} {pbl^%d,%d} ->  

{pil_4^%d,%d} {pb_2^%d,%d}\n", i,j, i,j, i,j, i,j, i,j ); 
     printf("tr {ti_4,3^%d,%d} {pi_4^%d,%d} {pbl^%d,%d} ->  

{pil_4^%d,%d} {pb_3^%d,%d}\n", i,j, i,j, i,j, i,j, i,j ); 
     printf("tr {to_2^%d,%d} {pil_4^%d,%d} {pb_2^%d,%d} ->  

{pi_4^%d,%d} {pbl^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j ); 
     printf("tr {ti_2,1^%d,%d} {po_4^%d,%d} {pbl^%d,%d} ->  

{pol_4^%d,%d} {pb_1^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j ); 
     printf("tr {ti_2,3^%d.%d} {po_4^%d,%d} {pbl^%d,%d} ->  

{pol_4^%d,%d} {pb_3^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j ); 
     printf("tr {ti_2,4^%d,%d} {po_4^%d,%d} {pbl^%d,%d} ->  

{pol_4^%d,%d} {pb_4^%d,%d}\n", i,j, i,j+1, i,j, i,j+1, i,j ); 
     printf("tr {to_3^%d,%d} {pil_1^%d,%d} {pb_3^%d,%d} ->  

{pi_1^%d,%d} {pbl^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j ); 
     printf("tr {ti_3,1^%d,%d} {po_1^%d^%d} {pbl^%d,%d} ->  

{pol_1^%d,%d} {pb_1^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j ); 
     printf("tr {ti_3,2^%d,%d} {po_1^%d,%d} {pbl^%d,%d} ->  

{pol_1^%d,%d} {pb_2^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j ); 
     printf("tr {ti_3,4^%d,%d} {po_1^%d,%d} {pbl^%d,%d} ->  

{pol_1^%d,%d} {pb_4^%d,%d}\n", i,j, i+1,j, i,j, i+1,j, i,j );    
   } 
 printf("net n2o%d\n", k);   
}  

Listing 1 Generator of the open square grid model 

In Listing 2, Petri net generated by the program, shown in Listing 1, at the parameter value 
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2=k , is represented; the net completely corresponds to the graphical representation of the grid 
model shown in fig. 3. 
tr {to_1^1,1} {pol_1^1,1} {pb_1^1,1} -> {po_1^1,1} {pbl^1,1} 
tr {ti_1,2^1,1} {pi_1^1,1} {pbl^1,1} -> {pil_1^1,1} {pb_2^1,1} 
tr {ti_1,3^1,1} {pi_1^1,1} {pbl^1,1} -> {pil_1^1,1} {pb_3^1,1} 
tr {ti_1,4^1,1} {pi_1^1,1} {pbl^1,1} -> {pil_1^1,1} {pb_4^1,1} 
tr {to_4^1,1} {pol_4^1,1} {pb_4^1,1} -> {po_4^1,1} {pbl^1,1} 
tr {ti_4,1^1,1} {pi_4^1,1} {pbl^1,1} -> {pil_4^1,1} {pb_1^1,1} 
tr {ti_4,2^1,1} {pi_4^1,1} {pbl^1,1} -> {pil_4^1,1} {pb_2^1,1} 
tr {ti_4,3^1,1} {pi_4^1,1} {pbl^1,1} -> {pil_4^1,1} {pb_3^1,1} 
tr {to_2^1,1} {pil_4^1,2} {pb_2^1,1} -> {pi_4^1,2} {pbl^1,1} 
tr {ti_2,1^1,1} {po_4^1,2} {pbl^1,1} -> {pol_4^1,2} {pb_1^1,1} 
tr {ti_2,3^1.1} {po_4^1,2} {pbl^1,1} -> {pol_4^1,2} {pb_3^1,1} 
tr {ti_2,4^1,1} {po_4^1,2} {pbl^1,1} -> {pol_4^1,2} {pb_4^1,1} 
tr {to_3^1,1} {pil_1^2,1} {pb_3^1,1} -> {pi_1^2,1} {pbl^1,1} 
tr {ti_3,1^1,1} {po_1^2^1} {pbl^1,1} -> {pol_1^2,1} {pb_1^1,1} 
tr {ti_3,2^1,1} {po_1^2,1} {pbl^1,1} -> {pol_1^2,1} {pb_2^1,1} 
tr {ti_3,4^1,1} {po_1^2,1} {pbl^1,1} -> {pol_1^2,1} {pb_4^1,1} 
tr {to_1^1,2} {pol_1^1,2} {pb_1^1,2} -> {po_1^1,2} {pbl^1,2} 
tr {ti_1,2^1,2} {pi_1^1,2} {pbl^1,2} -> {pil_1^1,2} {pb_2^1,2} 
tr {ti_1,3^1,2} {pi_1^1,2} {pbl^1,2} -> {pil_1^1,2} {pb_3^1,2} 
tr {ti_1,4^1,2} {pi_1^1,2} {pbl^1,2} -> {pil_1^1,2} {pb_4^1,2} 
tr {to_4^1,2} {pol_4^1,2} {pb_4^1,2} -> {po_4^1,2} {pbl^1,2} 
tr {ti_4,1^1,2} {pi_4^1,2} {pbl^1,2} -> {pil_4^1,2} {pb_1^1,2} 
tr {ti_4,2^1,2} {pi_4^1,2} {pbl^1,2} -> {pil_4^1,2} {pb_2^1,2} 
tr {ti_4,3^1,2} {pi_4^1,2} {pbl^1,2} -> {pil_4^1,2} {pb_3^1,2} 
tr {to_2^1,2} {pil_4^1,3} {pb_2^1,2} -> {pi_4^1,3} {pbl^1,2} 
tr {ti_2,1^1,2} {po_4^1,3} {pbl^1,2} -> {pol_4^1,3} {pb_1^1,2} 
tr {ti_2,3^1.2} {po_4^1,3} {pbl^1,2} -> {pol_4^1,3} {pb_3^1,2} 
tr {ti_2,4^1,2} {po_4^1,3} {pbl^1,2} -> {pol_4^1,3} {pb_4^1,2} 
tr {to_3^1,2} {pil_1^2,2} {pb_3^1,2} -> {pi_1^2,2} {pbl^1,2} 
tr {ti_3,1^1,2} {po_1^2^2} {pbl^1,2} -> {pol_1^2,2} {pb_1^1,2} 
tr {ti_3,2^1,2} {po_1^2,2} {pbl^1,2} -> {pol_1^2,2} {pb_2^1,2} 
tr {ti_3,4^1,2} {po_1^2,2} {pbl^1,2} -> {pol_1^2,2} {pb_4^1,2} 
tr {to_1^2,1} {pol_1^2,1} {pb_1^2,1} -> {po_1^2,1} {pbl^2,1} 
tr {ti_1,2^2,1} {pi_1^2,1} {pbl^2,1} -> {pil_1^2,1} {pb_2^2,1} 
tr {ti_1,3^2,1} {pi_1^2,1} {pbl^2,1} -> {pil_1^2,1} {pb_3^2,1} 
tr {ti_1,4^2,1} {pi_1^2,1} {pbl^2,1} -> {pil_1^2,1} {pb_4^2,1} 
tr {to_4^2,1} {pol_4^2,1} {pb_4^2,1} -> {po_4^2,1} {pbl^2,1} 
tr {ti_4,1^2,1} {pi_4^2,1} {pbl^2,1} -> {pil_4^2,1} {pb_1^2,1} 
tr {ti_4,2^2,1} {pi_4^2,1} {pbl^2,1} -> {pil_4^2,1} {pb_2^2,1} 
tr {ti_4,3^2,1} {pi_4^2,1} {pbl^2,1} -> {pil_4^2,1} {pb_3^2,1} 
tr {to_2^2,1} {pil_4^2,2} {pb_2^2,1} -> {pi_4^2,2} {pbl^2,1} 
tr {ti_2,1^2,1} {po_4^2,2} {pbl^2,1} -> {pol_4^2,2} {pb_1^2,1} 
tr {ti_2,3^2.1} {po_4^2,2} {pbl^2,1} -> {pol_4^2,2} {pb_3^2,1} 
tr {ti_2,4^2,1} {po_4^2,2} {pbl^2,1} -> {pol_4^2,2} {pb_4^2,1} 
tr {to_3^2,1} {pil_1^3,1} {pb_3^2,1} -> {pi_1^3,1} {pbl^2,1} 
tr {ti_3,1^2,1} {po_1^3^1} {pbl^2,1} -> {pol_1^3,1} {pb_1^2,1} 
tr {ti_3,2^2,1} {po_1^3,1} {pbl^2,1} -> {pol_1^3,1} {pb_2^2,1} 
tr {ti_3,4^2,1} {po_1^3,1} {pbl^2,1} -> {pol_1^3,1} {pb_4^2,1} 
tr {to_1^2,2} {pol_1^2,2} {pb_1^2,2} -> {po_1^2,2} {pbl^2,2} 
tr {ti_1,2^2,2} {pi_1^2,2} {pbl^2,2} -> {pil_1^2,2} {pb_2^2,2} 
tr {ti_1,3^2,2} {pi_1^2,2} {pbl^2,2} -> {pil_1^2,2} {pb_3^2,2} 
tr {ti_1,4^2,2} {pi_1^2,2} {pbl^2,2} -> {pil_1^2,2} {pb_4^2,2} 
tr {to_4^2,2} {pol_4^2,2} {pb_4^2,2} -> {po_4^2,2} {pbl^2,2} 
tr {ti_4,1^2,2} {pi_4^2,2} {pbl^2,2} -> {pil_4^2,2} {pb_1^2,2} 
tr {ti_4,2^2,2} {pi_4^2,2} {pbl^2,2} -> {pil_4^2,2} {pb_2^2,2} 
tr {ti_4,3^2,2} {pi_4^2,2} {pbl^2,2} -> {pil_4^2,2} {pb_3^2,2} 
tr {to_2^2,2} {pil_4^2,3} {pb_2^2,2} -> {pi_4^2,3} {pbl^2,2} 
tr {ti_2,1^2,2} {po_4^2,3} {pbl^2,2} -> {pol_4^2,3} {pb_1^2,2} 
tr {ti_2,3^2.2} {po_4^2,3} {pbl^2,2} -> {pol_4^2,3} {pb_3^2,2} 
tr {ti_2,4^2,2} {po_4^2,3} {pbl^2,2} -> {pol_4^2,3} {pb_4^2,2} 
tr {to_3^2,2} {pil_1^3,2} {pb_3^2,2} -> {pi_1^3,2} {pbl^2,2} 
tr {ti_3,1^2,2} {po_1^3^2} {pbl^2,2} -> {pol_1^3,2} {pb_1^2,2} 
tr {ti_3,2^2,2} {po_1^3,2} {pbl^2,2} -> {pol_1^3,2} {pb_2^2,2} 
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tr {ti_3,4^2,2} {po_1^3,2} {pbl^2,2} -> {pol_1^3,2} {pb_4^2,2} 
net n2o2 

Listing 2 Generated model of the open square grid of size 2 (.net format) 

Thus, the technique of constructing a Petri net generator in logical format is specified as follows: 

(a) obtain a parametric description of infinite Petri net; 

(b) compose program loops according to the indices variation of the parametric description; 

(c) compose printed lines according to the lines of the parametric description; 

(d) check nets generated for definite values of parameters in system Tina. 

5. Application of Generated Nets 
The main application area of specific grid models, obtained as result of generators work, is the 
formation of data base of actual nets for further inductive conclusions regarding the properties of 
infinite Petri nets with regular structure.  

On basis of calculation and analysis of place invariants for a sequence of grid models with 
definite sizes [11,12] the general parametric description of invariants was obtained and the 
p-invariance of Petri net for an arbitrary value of parameter k  was proven. Analogous results were 
obtained in [13] for hypercube structures of an arbitrary size with an arbitrary number of dimensions. 
For instance, the parametric description of place invariants of the grid (2) has the form (3).  

Remind, that place invariants [5] are nonnegative integer weights of places such that the 
weighted sum of tokens remains constant in every reachable marking i.e. invariant net is structurally 
safe (conservative) and bounded. Invariants are solutions of linear homogeneous system of equations 
constructed as balance of input and output arcs for each transition [11]. For instance, on parametric 
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Parametric representation (3) of basis invariants matrix is rather sophisticated because it is valid 
for any given magnitude of parameter k . Only nonzero elements are listed, and in the example of 
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square grid, all of them are equal to unit. There are two types of parametric rows: each of rows 1-5 
describes a set of rows with a few nonzero elements (two for rows 1-4 and five for row 5); each of 
rows 6 and 7 describes a single row containing a set of nonzero elements. To distinguish difference, 
brackets are used.  

Invariants calculated by system Tina for definite values of parameter k  coincide with 
invariants generated from (3). Thus, the described technique could be used for generating net 
invariants on their parametric description. For instance, the place invariants of the net, shown in fig. 3, 
are represented in Listing 3 in an explicit form.  
({pi_1^1,1},{pil_1^1,1}) 
({pi_1^1,2},{pil_1^1,2})  
({pi_1^2,1},{pil_1^2,1}) 
({pi_1^2,2},{pil_1^2,2}) 
({pi_1^3,1},{pil_1^3,1}) 
({pi_1^3,2},{pil_1^3,2}) 

({po_1^1,1},{pol_1^1,1}) 
({po_1^1,2},{pol_1^1,2}) 
({po_1^2,1},{pol_1^2,1}) 
({po_1^2,2},{pol_1^2,2}) 
({po_1^3,1},{pol_1^3,1}) 
({po_1^3,2},{pol_1^3,2}) 

({pi_4^1,1},{pil_4^1,1}) 
({pi_4^1,2},{pil_4^1,2}) 
({pi_4^1,3},{pil_4^1,3}) 
({pi_4^2,1},{pil_4^2,1}) 
({pi_4^2,2},{pil_4^2,2}) 
({pi_4^2,3},{pil_4^2,3}) 

({po_4^1,1},{pol_4^1,1}) 
({po_4^1,2},{pol_4^1,2}) 
({po_4^1,3},{pol_4^1,3}) 
({po_4^2,1},{pol_4^2,1}) 
({po_4^2,2},{pol_4^2,2}) 
({po_4^2,3},{pol_4^2,3}) 

({pb_1^1,1},{pb_2^1,1},{pb_3^1,1},{pb_4^1,1},{pbl^1,1}) 
({pb_1^1,2},{pb_2^1,2},{pb_3^1,2},{pb_4^1,2},{pbl^1,2}) 
({pb_1^2,1},{pb_2^2,1},{pb_3^2,1},{pb_4^2,1},{pbl^2,1}) 
({pb_1^2,2},{pb_2^2,2},{pb_3^2,2},{pb_4^2,2},{pbl^2,2}) 
({pil_1^1,1},{pol_1^1,1},{pil_4^1,1},{pol_4^1,1},{pbl^1,1}, 
 {pil_1^1,2},{pol_1^1,2},{pil_4^1,2},{pol_4^1,2},{pbl^1,2}, 
 {pil_1^2,1},{pol_1^2,1},{pil_4^2,1},{pol_4^2,1},{pbl^2,1}, 
 {pil_1^2,2},{pol_1^2,2},{pil_4^2,2},{pol_4^2,2},{pbl^2,2}, 
 {pil_1^3,1},{pol_1^3,1},{pil_1^3,2},{pol_1^3,2}, 
 {pil_4^1,3},{pol_4^1,3},{pil_4^2,3},{pol_4^2,3}) 
({pi_1^1,1},{po_1^1,1},{pi_4^1,1},{po_4^1,1}, 
 {pb_1^1,1},{pb_2^1,1},{pb_3^1,1},{pb_4^1,1}, 
 {pi_1^1,2},{po_1^1,2},{pi_4^1,2},{po_4^1,2}, 
 {pb_1^1,2},{pb_2^1,2},{pb_3^1,2},{pb_4^1,2}, 
 {pi_1^2,1},{po_1^2,1},{pi_4^2,1},{po_4^2,1}, 
 {pb_1^2,1},{pb_2^2,1},{pb_3^2,1},{pb_4^2,1}, 
 {pi_1^2,2},{po_1^2,2},{pi_4^2,2},{po_4^2,2}, 
 {pb_1^2,2},{pb_2^2,2},{pb_3^2,2},{pb_4^2,2}, 
 {pi_1^3,1},{po_1^3,1},{pi_1^3,2},{po_1^3,2},  
 {pi_4^1,3},{po_4^1,3},{pi_4^2,3},{po_4^2,3}) 

Listing 3 Place invariants of the open square grid with size 2 (fig. 2) 

In some cases, the automatic visualization of generated nets is useful for evaluating general 
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patterns of layout and additional check of composition rules. In fig. 4, model of grid of size 4 is 
represented in graphical form that is created automatically by simulating system Tina.  

 

 

Figure 4 Automatic visualization of a generated grid model in Tina 

Moreover, generated Petri net models could be applied as tests in Petri net simulating and 
analysis systems development, especially, when the properties of studied nets are known a priori. For 
instance, considered models of grids are safe according to the composition rules because each 
transition has exactly two input and two output places. It allows debugging software on big dimension 
nets. 

6. Generating Petri Nets in Graphical Form 
Automatic visualization of grid models is not distinguished by clearness and allows visual evaluation 
of the general pattern only. Some applications require working with graphical formats, for instance, 
for watching token game and studying transitions firing sequences. A model could be generated in 
graphical format as well.  

Graphical file format (.ndr) of system Tina contains such extra information, regarding described 
in section 2 logical format (.net), as coordinates of vertices on a plane and arcs’ curves description: 

t <xpos> <ypos> <transition-name> <options> 
p <xpos> <ypos> <place-name> <marking> <options> 
e <vertex1-name> <vertex2-name> <weight> <options> 
e <vertex1-name> <ang> <rad> <vertex2-name> <ang> <rad> <options> 
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Lines of types ‘p’ and ‘t’ describe places and transitions correspondently. Each row contains 
node coordinates (xpos, ypos) on a plane and its name; place description also includes its initial 
marking. Each arc is described separately with a line of type ‘e’. It contains names of the source and 
target vertices and multiplicity (weight) for a straight arc; for a curved arc, two pairs of additional 
parameters (ang, rad) define an angle and radius of arc curve for its both ends.  

The technique of generating .ndr files starts with drawing in Tina a model of a grid node (fig. 1) 
and saving the corresponding .ndr file. An example of a net fragment description containing a place, a 
transition and an arc connecting them, for grid node model shown in fig. 1, looks like: 

p 200.0 50.0 {po_1} 0 n 
t 240.0 130.0 {to_1} 0 w n 
e {to_1} {po_1} 1 n 

Then the obtained .ndr file is used as a pattern to fill in the main loop of the generator which 
overall organization is similar to Listing 1. Only descriptions of vertices contain coordinates which 
should be recalculated for each node of the grid on its indices; relative format of arcs’ curvature 
description does not require their correction. Based on an element description, a format string of 
corresponding printf operator is created. Instead of definite coordinates (xpos, ypos) it contains 
format “%.1f %.1f” for printing recalculated coordinates and a format “^%d.%d” is inserted into 
vertices names for printing current node index within grid: 
printf("p %.1f %.1f {po_1^%d.%d} 0 n\n",(i-1)*DI+200.0, (j-1)*DJ+50.0, j, i); 
printf("t %.1f %.1f {to_1^%d.%d} 0 w n\n",(i-1)*DI+240.0, (j-1)*DJ+130.0, j, i); 
printf("e {to_1^%d.%d} {po_1^%d.%d} 1 n\n",j, i, j, i); 

Coordinates of vertices are calculated based on vertical and horizontal grid node offsets DI and 
DJ correspondingly which are equal to the maximal coordinates of a single grid node description. 
Then the local offset of a vertex within grid node is added. Reverse order of indices for coordinates 
regarding names is explained by the fact that in the grid model a matrix order of indexing is used: first 
index (i) – number of a row, second index (j) – number of a column. But in Tina, the first coordinate 
axis (x) is horizontal and the second (y) is vertical.  

Series of grid models generators, working in graphical format, were developed and employed in 
investigation of infinite Petri nets properties [11-13]. An example of generated open square grid 
model of size 4 is shown in fig. 5.  

Thus, the technique of constructing a Petri net generator in graphical format is specified as 
follows: 

(a) obtain a parametric description of infinite Petri net; 

(b) compose basic fragments of Petri net in system Tina in graphical form; 

(c) write programs to generate basic fragments of Petri net in graphical format using saved 
net fragments; 

(d) compose program loops according to the indices variation of the parametric description; 

(e) insert printed lines of the basic fragments; 

(f) add vertical and horizontal offsets depending on the parameters of loops to the 
coordinates of Petri net elements; 

(g) check nets generated for definite values of parameters in system Tina. 

 



Computer Communication & Collaboration (Vol. 2, Issue 2, 2014) 
ISSN 2292-1028(Print)  2292-1036(Online) 

DOIC: 2292-1036-2014-02-002-24 

~ 24 ~ 

 
Figure 5 An example of the open square grid model of size 4 generated in graphical format 

7. Conclusions 
The technique of constructing software generators of Petri nets with regular structure on basis of their 
parametric description was presented.  

The technique was applied successfully for testing modules Deborah and Adriana for 
compositional analysis [5] of Petri nets, verification of Ethernet protocols, and analysis of flat 
computing grids [11,12] and computing structures of hypercube [13]. The application of the 
technique allowed drawing conclusions regarding the properties of infinite Petri nets which necessity 
of use is demanded by the development of computer and communication technology considering 
interaction of unlimited number of devices.  
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The technique could be employed as well in wide range of Petri net application domains, 
including automated manufacture, business processes and programming.  
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