Rozpoznávanie vzorov v experimente JEM-EUSO

Aktuálne trendy v Informatike 2

Michal Vrábel Košice 2017

Vysokoenergetické kozmické žiarenie

- Cieľ JEM-EUSO: <u>Identifikácia zdrojov</u> vysoko-energetického kozmického žiarenia
- **GZK limit** (Greisen-Zatsepin-Kuzmin)
 - Predpokladá sa, že spektrum kozmického žiarenia končí pod 1×10²⁰ eV kvôli kozmickému mikrovlnému pozadiu
 - Vzdialenosť útlmu (atenuácie) pre protóny s energiou 1×10^{20} eV je okolo 100 Mpc.
 - Boli pozorované častice nad týmto limitom – Fly's Eye pozoroval 3×10²⁰ eV [2]
- Spŕšky sú produkované pri vstupe častíc kozmického žiarenia do atmosféry.
 - Kolízie primárnych častíc spôsobujú kaskádu sekundárnych kolízií.
 - Zapríčiňujú excitáciu molekúl atmosféry, ktoré deexcitujú fluorescenciou (najmä v UV spektre)

Obr. 1: Závislosť toku primárnych častíc od energie [1].

^[1] Todor Stanev. "Ultrahigh Energy Cosmic Rays". In: arXiv (2011), pp. 1–40. DOI: 10.1103/RevModPhys.83.907. ArXiv: 1103.0031.
[2] D. J. Bird et al. "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". In: apj 441 (Mar.1995), pp. 144–150. DOI : 10.1086/175344. eprint: astro-ph/9410067

JEM-EUSO experiment

- Ciel': <u>Identifikácia zdrojov vysoko-energetického</u> <u>kozmického žiarenia</u>
- Kolaborácia zahŕňa 16 krajín a skoro 90 inštitúcií (TUKE člen od roku 2015)
- Pozorovanie atmosferických spŕšok z obežnej dráhy pomocou fluorescenčného detektora
- Detektor
 - pozoruje oblasť s polomerom 380 km, 4.5 \times 105 km² (ISS orbit, nadir), 1 bod odpovedá 0.56 \times 0.56 km²
 - Priestorové rozĺišenie 320 000 obrazových bodov
 - Temporálne rozlíšenie 2.5 μ s = 1 Gate Time Unit (GTU).
 - Intenzita obrazového bodu je počet fotoelektrónov za 1 GTU.

Obr. 2: Princíp JEM-EUSO experimentu [3].

Obr. 3: Plocha pozorovaná JEM-EUSO detektorom (side-cut verzia) [4].

JEM-EUSO experiment:

Cieľ rozpoznávania vzorov v JEM-EUSO

- Získanie presných parametrov (rekonštrukcia) primárnej častice (a spŕšky) zo sekvencie "obrázkov" pozorovanej detektorom
 - Parametre: smer príchodu (θ , ϕ), energia (E)

Obr. 4: Cieľ rozpoznávania vzorov v JEM-EUSO.

JEM-EUSO experiment:

Príklad atmosferickej spŕšky (1)

Obr. 5: Animácia spŕšky na ohniskovej ploche detektora.

 $\begin{array}{l} {\sf Spŕška:} \\ {\sf E} =& 1.5 \times 10^{20} \ \text{eV} \ \theta = 75.3^{\circ} \ \phi = 222.4^{\circ} \\ {\sf X}_1 =& 74.45 \ \text{g/cm}^3 \ {\sf X}_{_{1 \ \text{pos}}} =& [27.24, -36.83, 27.31] \ \text{km} \\ {\sf X}_{_{\text{max}}} =& 939.45 \ \text{g/cm}^3 \ {\sf X}_{_{\text{max} \ \text{pos}}} =& [73.97, 5.84, 10.74] \ \text{km} \end{array}$

JEM-EUSO experiment:

Príklad atmosferickej spŕšky (2)

Obr. 6: Zlúčený pohľad spŕšky na ohniskovej ploche detektora.

 $\begin{array}{l} {\sf Spŕška:} \\ {\sf E} =& 1.5 \times 10^{20} \mbox{ eV } \theta = 75.3^{\circ} \mbox{ } \phi = 222.4^{\circ} \\ {\sf X}_1 =& 74.45 \mbox{ g/cm}^3 \mbox{ } X_{1 \mbox{ pos}} =& [27.24, -36.83, 27.31] \mbox{ km} \\ {\sf X}_{max} =& 939.45 \mbox{ g/cm}^3 \mbox{ } X_{max \mbox{ pos}} =& [73.97, 5.84, 10.74] \mbox{ km} \end{array}$

Rekonštrukcia spŕšok v JEM-EUSO experimente

- Pozostáva z postupnosti modulov, ktoré možno prirovnať k úlohám počítačového videnia.
- Predspracovanie segmentácia.
- Extrakcia príznakov rekonštrukcia smeru spŕšky a profilu spŕšky.
- Fitovanie a klasifikácia rekonštrukcia energie a typu primárnej častice, rekonštrukcia X_{max}

Obr. 14: Proces rekonštrukcie spŕšky v programe Reco softvérového rámca ESAF [33].

Houghová transformácia pre segmentáciu spŕšky

 Výber pixelov v okolí najvýraznejšej čiary v X-Y, X-GTU, Y-GTU rovinách

Obr. 23: Príklad spŕšky rekonštruovanej algoritmom Hough 2. *Zvýraznené pixely sú vybrané označené algoritmom ako pixely spŕšky*

Počítačové videnie

- Počítačové videnie = rozpoznávanie vzorov v obraze
 - priestorová súvislosť medzi vstupmi (obrazovými bodmi).
- Bishop Rozpoznávanie vzorov [6]:
 - Automatické objavovanie regularít v dátach využitím algoritmov.
 Regularity sú využité pre akcie ako klasifikácia alebo regresia.
- Postupy počítačového videnia sa často delia do 2 alebo 3 úrovní [6]:
 - <u>Nízka úroveň</u> spracovanie obrazu
 - Stredná úroveň extrakcia príznakov
 - **Porozumenie obrazu** štatistická klasifikácia, regresia

 ^[5] C.M. Bishop. Pattern Recognition and Machine Learning. Information science and statistics. Springer, 2013. ISBN: 9788132209065
 [6] E.R. Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Academic Press. Elsevier, 2012. ISBN : 9780123869081. (Kompletný zoznam literatúry je na konci prezentácie.)

Počítačové videnie:

Počítačové videnie nízkej úrovne

- Prahovanie [12]
 - Metódy založené na: distribúcií intenzít, klastrovaní, entropii, lokálne distribúcie intenzity, atď.
- Detekcia hrán [13]
 - Metódy založené na: diferenciálnom gradiente, laplaceovský operátor, rezy grafu, aktívne kontúry.
- Práca s binárnymi obrázkami [14]
- Filtrovanie napr. Gauss, Median, Mode
- Detekcia rohov napr. Harris

Obr. 7.1: Príklad detekcie hrán – operátor Sobel.

[12] Mehmet Sezgin et al. "Survey over image thresholding techniques and quantitative performance evaluation". In: Journal of Electronic imaging 13.1 (2004), pp. 146–168. 1993, pp. 42–55. ISBN: 978-1-4899-3216-7. DOI: 10.1007/978-1-4899-3216-7_3.

[13] E.R. Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Academic Press. Elsevier, 2012. ISBN : 9780123869081

^[14] Milan Sonka, Vaclav Hlavac, and Roger Boyle. "Data structures for image analysis". In: Image Processing, Analysis and Machine Vision. Boston, MA: Springer US, 10

Počítačové videnie:

Počítačové videnie nízkej úrovne

- Prahovanie [12]
 - Metódy založené na: distribúcií intenzít, klastrovaní, entropii, lokálne distribúcie intenzity, atď.
- Detekcia hrán [13]
 - Metódy založené na: diferenciálnom gradiente, laplaceovský operátor, rezy grafu, aktívne kontúry.
- Práca s binárnymi obrázkami [14]
- Filtrovanie napr. Gauss, Median, Mode
- Detekcia rohov napr. Harris

Obr. 7.2: Príklad prahovania a detekcie hrán (kompozitný obraz spŕšky - maximum).

[12] Mehmet Sezgin et al. "Survey over image thresholding techniques and quantitative performance evaluation". In: Journal of Electronic imaging 13.1 (2004), pp. 146–168. 1993, pp. 42–55. ISBN: 978-1-4899-3216-7. DOI: 10.1007/978-1-4899-3216-7_3.

[13] E.R. Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Academic Press. Elsevier, 2012. ISBN : 9780123869081

[14] Milan Sonka, Vaclav Hlavac, and Roger Boyle. "Data structures for image analysis". In: Image Processing, Analysis and Machine Vision. Boston, MA: Springer US, 👘 1

Počítačové videnie:

Počítačové videnie strednej úrovne

- Úloha hľadanie obrazových bodov zodpovedajúcich modelu – prístupy je možné rozdeliť na základe počtu obmedzení a parametrov modelu
 - Nad-obmedzenie počet neznámych parametrov je nižší ako počet obmedzení – minimizácia.
 - Obmedzenie rovnaký počet parametrov ako obmedzení hľadanie optimálnej kombinácie.
 - Pod-obmedzenie počet neznámych parametrov¹⁰⁰ je vyšší ako počet obmedzení, všetky možné
 ⁵⁰ kombinácie parametrov sú testované – Houghová transformácia.
- Os spŕšky je možné nájsť algoritmami pre detekciu čiar, viac špecifický algo. – smer príchodu častice.

[15] Alice Collaboration et al. "ALICE: Physics Performance Report, Volume II". In: Journal of Physics G: Nuclear and Particle Physics 32.10 (2006), pp. 1295–2040. ISSN: 0954-3899. DOI: 10.1088/0954-3899/32/10/001.

[16] R. Mankel. "A Concurrent track evolution algorithm for pattern recognition in the HERA-B main tracking system". In: Nucl. Instrum. Meth. A395 (1997), pp. 169– 184. DOI: 10.1016/S0168-9002(97)00705-5.

Počítačové videnie: Porozumenie obrazu

- štatistická klasifikácia, numerická predikcia (regresia)
- Typicky sa využívajú prístupy strojového učenia.
 - Jain et al. [7]:
 - syntaktické porovnávanie [8] –
 hierarchické štruktúry vzorov gramatika,
 - porovnávanie šablón [9] korelácia so známymi šablónami,
 - štatistická klasifikácia [10] hľadanie separácie medzi triedami,
 - neurónové siete [11] implicitne ekvivalentné alebo podobné štatistickej klasifikácii.

Príklad – klasifikácia – rozhodovacie hranice.

llustrácia: Morgun Ivan. Types of machine learning algorithms. [ONLINE] Dostupné na: http://en.proft.me/2015/12/24/types-machine-learning-algorithms/

Počítačové videnie > Porozumenie obrazu:

Neurónové siete (dopredné)

- Multi vrstvový perceptrón (MLP)
 - Tréning spätnou propagáciou.
 - Viac skrytých vrstiev
 - problémy nestabilného gradientu vytrácajúci sa alebo explodujúci.
- Rekonštrukcia parametrov spŕšiek
 - rekonštrukcia energie pri čerenkových teleskopoch experimentu MAGIC [18],
 - klasifikácia typu primárnych častíc v Pierre Auger Observatory [19],
 - Vstup NN extrahované parametre spŕšky.

Obr. 10: McMulloch a Pittov model neurónu.

Hidden

Obr. 11: Príklad štruktúry doprednej NN.

[17] Leandro G. Almeida et al. "Playing tag with ANN: boosted top identification with pattern recognition". In: Journal of High Energy Physics 2015.7 (July 2015), p. 86. ISSN: 1029-8479. DOI: 10.1007/JHEP07(2015)086. arXiv: 1501.05968

[18] Jens Zimmermann. "Statistical Learning in High Energy and Astrophysics". Dissertation. Ludwig-Maximilians-Universitat, 2005.

[19] Riggi, S., & Caruso, R. (2007). A neural network approach to event-by-event cosmic ray primary mass identification. Proceedings of Science, 23-27.

Počítačové videnie > **Porozumenie obrazu** > **Neurónové siete**:

Hlboké neurónové siete

- Klasické systémy pre rozpoznávanie vzorov vyžadujú extrakciu príznakov
- Parikh and Zitnick [20]:
 - Klasifikačné schopnosti ľudí nie sú lepšie ako pri algoritmoch strojového učenia
 - Ľudia prekonali strojové videnie v extrakcii príznakov
- Metódy reprezentačného strojového učenia [21] nahradzujú extrakciu príznakov od experta učiacim procesom.
- Hlboké učenie Hlboké neurónové siete [22]
 - Viaceré úrovne umožňujúce postupné zvyšovanie abstrakcie.
 - Riešia (znižujú) problémy MLP, tréning je urýchlený aj vďaka GPGPU.
 - Spracovanie obrazu konvolučné neurónové siete (CNN), Deep belief networks

^[20] Devi Parikh and C Lawrence Zitnick. "The role of features, algorithms and data in visual recognition". In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE. 2010, pp. 2328–2335.

^[21] Y. Bengio, A. Courville, and P. Vincent. "Representation Learning: A Review and New Perspectives". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.8 (2013), pp. 1798–1828. DOI : 10.1109/tpami.2013.50

^[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. "Deep learning". In: Nature 521.7553 (2015), pp. 436-444. ISSN : 0028-0836. DOI: 10.1038/nature14539.

Počítačové videnie > Porozumenie obrazu > Neurónové siete > Hlboké neurónové siete:

Konvolučné neurónové siete

- Vychádza z konceptov receptívnych polí [23], neocognition [24], prvý návrh LeNet-5 [25]
- Popularita vzrástla po víťazstve v ImageNet 2012 (1 000 000 obrázkov, 1 000 tried) [26]
- Štruktúra
 - Vstup obrazové body
 - Konvolučné vrstvy neuróny napojené na svoje receptívne polia, Neuróny vo vrstve zdieľajú váhy.
 - **ReLU** Rektifikovaná lineárna jednotka znižuje problémy nestabilného gradientu
 - Združovanie zmenšovanie regiónov
 - Plne prepojené vrstvy Viac vrstvový perceptrón

Obr. 12: Štruktúra konvolučnej siete LeNet-5 [27]

[23] Hubel, D. H.; Wiesel, T. N. (1968-03-01). "Receptive fields and functional architecture of monkey striate cortex". The Journal of Physiology. 195 (1): 215–243. doi:10.1113/jphysiol.1968.sp008455. ISSN 0022-3751.

[24] Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" (PDF). Biological Cybernetics. 36 (4): 193–202. doi:10.1007/BF00344251

[25] Yann LeCun et al. "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324. DOI: 10.1109/5.726791.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: Advances In Neural Information Processing Systems (2012), pp. 1–9. ISSN: 10495258. DOI: 10.1016/j.protcy.2014.09.007.

Konvolučná neurónová sieť

Adam Harley. Dostupné na: http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Konvolučné neurónové siete (1)

March 1	convi	p1 n1	conv2	p2 n3	2 con	v3 con	v4 co1	105 p5	fe6 f	'e7 fe8	prob
							2 Tak				
						ym)	<i>"</i>				
13			-		2	2.4.4					
2											
r		20									
						Ţ.					
fwd conv1 43 Back	: off]	Boost:	0/1								

Konvolučné neurónové siete (2)

Konvolučné neurónové siete (3)

Konvolučné neurónové siete (4)

and the second second	con	.v1 p	1 n1	001	nv2	p2	n2	con	v3	conv	4 ea	nv5	p5	fe6	fe7	fe8	\mathbf{pr}
State of the second				9 <u>4</u> .			1			ii h	6.3					ų. P	
Jack			2	9	3	懠			1	11	. 199		<u>1</u>	24			
The H	9		12.8			6Ľ			9653 • 1			4	2	12			
		17				2	lų, i ta n			ų.	ň,	111	52			2	
				- 171 			1÷.					1	3. 1		÷ l		
		<u>In</u>		ų į					Ĩ,				2			ЗР.	
			15	Ý.	Ë.		17	1				57			-	.	
	9				Ć						14. 14.						
		Ēŗ.	E.	•		17		ţ		Ę.	÷	5	11.	1	цЦ.		
			1	n,	<i>5</i> -	l I		<u>,</u>	ι.	£.		÷.	S.	84	Ē		
	- 	Ť	Ń	1		5.	÷.		. 1	Ω		1	ļ.				
			1		÷	1			15	:					Ù		
	Ē		51		1	<u>`</u>	Ĭ.					1					
			<u>a</u>)			() 		n N S Ja	£.,	1	<u>, (1)</u>			
					1	\cap	Ē	Λ	ţ.		. 1				2	\cap	
	÷	÷		1					0	-	100	-					
vd conv2 4 B	ack: off	Boo	st: (1/1													

Konvolučné neurónové siete (5)

Konvolučné neurónové siete (6)

Konvolučné neurónové siete (7)

rob

and the second second	eon	$\mathbf{v1}$	p1	_n1	ec	\mathbf{nv}	2 р	2 r	12 (on	v3	eon	v4	eoi	nv5	\mathbf{p}	5 fc	e6 f	'e7	fe8	р
	- <u>1</u> 2.	ιđ.	÷.,		100				14			1'-	Ļ.	$\{V_{i}^{(i)}\}$	٤.,	G			сî Г		
		÷.,		1					۳	11			Ł,	, ť	4						
			ŧį.	\$ L		t f					\mathbf{k}_i			ľ,			j.				
ALL The	1			-5	1		÷+-	a.,		6R.	\mathbf{h}_{i}	Зř		4	τ.		$-\lambda_{i}^{\prime}$		£11)		
		à				5.	48			1°				11	13						
				$\sum_{i=1}^{n}$		関		N.								β_{i}	11		1		
	ţ.		${\bf \bar{\gamma}}_{i}$	i.i.			ι.	1	177		, e -	20	ŧ,		Ş.		£.,				
		ą.			1	2	\mathbb{T}^{n+1}								57	1	37	14	\mathcal{X}^{+}		
	-	à a	۹.17							2	군	$\mathbf{X}_{\mathbf{r}}$							€÷1		
		٠,			5.2	ξ.,							- 1 - 1 - 1		<u>,</u>	÷					
			£	()				-					1		. 7	t.					
			Ŷ.	4	<u>.</u> 4.	5.		1	5		11		1	*	41.42	5.	2				
		1Å	1.5	: [#] .			4	3		- 14	Ċ.		÷.	쿿				100			
					1		1.1	2	1	÷	λ_{i}		ή.	Ę.			Υ.		2		
				۳		· • * ,	8	÷				νŦ.			200		24		¥	Ъ.	
		뿺				K.	ŝ,	-	÷		1	1	2			÷.	1 - 17 1 - 1	1			
	.1					i se	1			2	1	1.5	Ω.	- 11 - 1 -		盟	÷	$r_{j,k}$	2		
		۰.4		-			1	13	а , в	Ξ.	. 1					1		57			
										B	1							뉇			
				0																	
fwd conv3_4 Back:	off	B	oos	;t: (0/1																

Konvolučné neurónové siete (8)

rob

fwd conv4_4 | Ba

	eon	nv1	$\mathbf{p1}$	n1	ec)nv?	2 р	2 n	n2 (on	v3	COD	v4	eoi	nv5	p5	fo	6 f	e7	fc8
				, i .	• •	1			1				vř.		γ.,	-6	Ŋ			
L	5		S.	ų. 16. –	in a	242				•	14	1	2		51.				R	
							2			15					1					
		1.5	7		34			11		1.1	17							-17		
		¥,	7	4	2			÷.						Ŧ		1			-	i.
			ŧ		1	9	10	i.				-	+	ζe.		12	1			
			h. 1		1	ŧ,				1114					١					
						12				2	5			1		Ť		51		
					N.			H			E				5 A.	.9				
	h.	à.t									1	11				12	.7			
	2				1.4					10		-					1			
		27	12	1	å	74		2		12	T	1.00	1		14	æ		1		
	÷.			C.		4	÷.								1	7	È			
					÷	1	÷				-		4	5			1.	÷.		С,
		ŝ	191	22			. 6		+		1.1		1	1		\sim	Ť			1
			T.		1	.+	٠						8			54				+
		17				F		÷	-	ļ.			-		T.					I.
	k	55				٠	1											1		2
	15							E	-			1		H						
			-	1																
k:	off	B	008	st: •	0/1															

Konvolučné neurónové siete (9)

ob

fwd conv5_151

con	v1 p	o1 n	1 ea	nv2	p2	n2	con	v3 c	onv-	4 c o	nv5	p5	fe6	fe7	fe8
					-					ан. С				1 m	1 N .
	5			1	4		•				1		1		
	۰.	-		ъ.,				1	1.			1		a 1	e l
									. •			L.		,*	27
		4			ţ.	•	2	<u>,</u>		- -	,₽	đ,		;	
	-			۰,			s.c.	÷.		+		-		1	
					۰.				۰.					-	
			а.		1			í.		L			. .	1	
ţ.		1									100 A			1	
			٠.	٢.			9		_		÷		-		
	ι.		¢.							i.	٠		. 7	- 1	
					1						-				
	-		1	2	÷	-				1.					
		ď.		÷						7					
			1							- 1			ç		

Konvolučné neurónové siete (10)

Rekonštrukcia spŕšok v JEM-EUSO experimente

- Pozostáva z postupnosti modulov, ktoré možno prirovnať k úlohám počítačového videnia.
- Predspracovanie segmentácia.
- Extrakcia príznakov rekonštrukcia smeru spŕšky a profilu spŕšky.
- Fitovanie a klasifikácia rekonštrukcia energie a typu primárnej častice, rekonštrukcia X_{max}

Obr. 14: Proces rekonštrukcie spŕšky v programe Reco softvérového rámca ESAF [33].

Odhad schopností detektora

- Verifikácia hardvéru a softvéru detektora a rekonštrukčného softvéru
- Presnosť rekonštrukcie
 - Kvantitatívny opis distribúcie rozdielu medzi simulovanou a rekonštruovanou spŕškou (alebo iným pozorovaným javom)
 - Použité pre porovnávanie algoritmov pre rekonštrukciu.
- Expozícia
 - Vyjadrenie množstva spŕšok pozorovaných za jednotku času
 - Porovnávanie JEM-EUSO s inými experimentami

Obr. 15: Odhady kumulatívnej expozície JEM-EUSO detektora porovnaný s inými experimentami [3, 34].

[34] Medina-Tanco, G., Asano, K., Cline, D., Ebisuzaki, T., Inoue, S., Lipari, P., ... Collaboration, F. (2009). JEM-EUSO Science Objectives. In Proc. of the 31st Intl. Cosmic Ray Conference (pp. 1–4). Lodz. Retrieved from http://arxiv.org/abs/0909.3766

Ciele dizertačnej práce (1)

- Analýza expozície detektora
 - Využitie nových modelov pre UV pozadie a oblačnosť.

– <u>Nová definícia expozície:</u>

- bude zahrňovať presnosť rekonštrukcie,
- spolu s vytvorenými nástrojmi umožni vyjadriť expozíciu detektora pre konkrétny zdroj UHECR.
- Skoro okamžité získanie expozície a presnosti rekonštrukcie detektora pre akýkoľvek dodaný popis zdroja.
 - Verifikácia viditeľnosti zdrojov detektorom.
 - Možnosť porovnať pozorovanú distribúciu častíc s modelmi zdrojov kozmického žiarenia.
- Reálnejšie vyjadrenie schopnosti detektora a rekonštrukčných algoritmov.
- Preverenie schopností detektora na vybraných modeloch zdrojov UHECR (Centaurus A).

Obr. 18: Systém pre výpočet expozície.

Ciele dizertačnej práce (2)

Metódy segmentácie spŕšky

- Vylepšenie presnosti rekonštrukcie UHECR skrz presnejší výber pixelov spŕšky.
- Pokus o odstránenie limitácie presnosti rekonštrukcie UHECR spôsobenej segmentáciou pixelov.
- Preverenie, že aktuálny proces rekonštrukcie neignoruje podstatné informácie využiteľné pri rekonštrukcii, ktoré zároveň nie sú stratené v šume.
- Návrh metód prispôsobujúcich sa meniacej sa intenzite UV pozadia.
- "Nová expozícia" bude využitá pre vyhodnotenie algoritmov
- Testovanie metód na dátach z EUSO-SPB experimentu.

Obr. 19: Porovnanie rekonštrukcie uhla pre rôzne metódy segmentácie.

Ciele dizertačnej práce (3)

- Rekonštrukcia javov pozorovaných detektorom využitím strojového učenia
 - Alternatívy prístup k analytickým a numerickým metódam rekonštrukcie UHECR.
 - Nová aplikačná doména pre konvolučné neurónové siete:
 - Nie len klasifikácia typu častice, ktorá spôsobila spŕšku.
 - Celý proces rozpoznania spŕšky (extrakcia príznakov, klasifikácia alebo regresia) je nahradený neurónovou sieťou.
 - Porovnanie naučených príznakov s parametrami, ktoré sa používajú pre opis spŕšky.
 - Trénovacie dáta budú najmä spŕšky, ktoré boli simulované pre výpočet expozície.
 - Vo finálnom systéme je úloha používateľa len poskytnúť presnú simuláciu spŕšky (alebo iného javu), resp. dostatočné množstvo pozorovaných spŕšok.

Ciele dizertačnej práce (4)

- Detekcia tsunami využitím detektorov triedy EUSO
 - Test novej možnosti detekcie tsunami skrz perturbácie intenzity svetelného žiarenia atmosféry (airglow) vyvolaného gravitačnými vlnami.
 - Algoritmy pre rozpoznávanie gravitačných vĺn.
 - Overenie prístupu rekonštrukcie využitím strojového učenia na rozdielnom jave ako UHECR spŕška.
 - Využitie / analýza dát z Mini-EUSO experimentu.

Príklad vĺn (sínus) pozorovaných detektorom.

Ďakujem.

michal.vrabel@tuke.sk

Doplnkové snímky

Počítačové videnie > Porozumenie obrazu > Neurónové siete > Hlboké neurónové siete:

Aplikácie konvolučných neurónových sietí

- Atmosferická spŕška 3-dimenzionálne dáta – X, Y, GTU
- Viaceré aplikácie na klasifikáciu 3D objektov [27], RGB obrázkov [28], videa [29]
- Aplikácie v astrofyzike a vo vysokoenergetickej fyzike
 - NOvA kolaborácia klasifikácia neutrín [30]
 - Daya Bay Neutrino experiment demonštrácia extrakcie "fyzikálne zaujímavých vzorov" [31]
 - LHC identifikácia bozónov [32]

[27] Daniel Maturana and Sebastian Scherer. "VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition". In: Iros (2015), pp. 922–928. ISSN: 21530866. DOI : 10.1109/IROS.2015.7353481.

^[28] Luís A. Alexandre. "3D Object Recognition Using Convolutional Neural Networks with Transfer Learning Between Input Channels". In: Intelligent Autonomous Systems 13: Proceedings of the 13th International Conference IAS-13. Ed. by EmanueleMenegatti et al. Cham: Springer International Publishing, 2016, pp. 889–898. ISBN: 978-3-319-08338-4. DOI: 10.1007/978-3-319-08338-4_64

^[29] Andrej Karpathy et al. "Large-scale video classification with convolutional neural networks". In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2014), pp. 1725–1732. ISSN : 10636919. DOI: 10.1109/CVPR.2014.223. ArXiv: 1412.0767

^[30] A. Aurisano et al. "A convolutional neural network neutrino event classifier". In: Journal of Instrumentation 11.09 (Sept. 2016), P09001–P09001. ISSN : 1748-0221. DOI: 10.1088/1748-0221/11/09/P09001. ArXiv: 1604.01444

^[31] Evan Racah et al. "Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks". In: (2016), pp. 1-8. arXiv: 1601.07621.

^[32] Luke de Oliveira et al. "Jet-Images – Deep Learning Edition". In: (2015). DOI: 10.1007/JHEP07(2016)069. arXiv: 1511.05190.

Odhad schopností detektora:

Vyhodnocovanie presnosti rekonštrukcie

- Rekonštrukčné algoritmy sú vyhodnocované porovnávaním simulovaných a rekonštruovaných spŕšok
- Rekonštrukcia uhlov
 - 68% udalostí sú rekonštruované s vyššou presnosťou ako je hodnota γ_{68}
- Energia
 - smerodajná odchýlka distribúcie R

$$R = \frac{E_{reco} - E_{real}}{E_{real}}$$

- Hĺbka maximálnej produkcie (X_{max})
 - smerodajná odchýlka distribúcie
 X_{max truth} X_{max reco}

[36] F. Fenu et al. "The JEM-EUSO energy and Xmax reconstruction performances". In: Proceedings, 34th International Cosmic Ray Conference (ICRC 2015).

Odhad schopností detektora:

Vyjadrenie expozície JEM-EUSO detektora

• Expozícia detektora ($\psi(E)$) [37,38] je vypočítaná ako súčin trvania misie (t), geometrickej apertúry ($A_{geo}(E)$) a operačný cyklu detektora (DC)

 $\psi(E) = A_{geo}(E) \cdot t \cdot DC$ [km². sr . rok]

 Geometrická svetelnosť hovorí o akceptácii spŕšok detektorom v závislosti od energie primárnych častíc

$$A_{geo}(E) = \int_{S_{test}} dS \int_{0}^{2\pi} d\phi \int_{0}^{2\pi} d\theta \cdot \cos \theta \cdot \sin \theta \cdot \epsilon(E, S, B_{rad})$$

Energia Plocha pozorovaná detektorom Smery príchodu častíc UV pozadie

$$\epsilon(E, S, B_{rad}) = \frac{N_{trigg}}{N_{tot}} = \frac{počet udalostí (spŕšok) akceptovaný spúšťačm}{celkový počet simulovaných udalostí (spŕšok)}$$

[37] J. H. Adams et al. "An evaluation of the exposure in nadir observation of the JEM-EUSO mission". In: Astropart. Phys. 44 (2013), pp. 76–90. DOI : 10.1016/j.astropartphys.2013.01.008. arXiv: 1305.2478 [astro-ph.HE].
[38] JEM-EUSO Collaboration et al. "JEM-EUSO observational technique and exposure". In: Experimental Astronomy 40.1 (Nov. 2015), pp. 117–134. ISSN : 0922-6435. DOI: 10.1007/s10686-014-9376-3.

Softvérový rámec Offline

- Pôvodne vyvinutý pre Pierre Auger experiment [34], simulácia a rekonštrukcia
- Modernejší kód (C++11)
- Lepšia konfigurácia
- Nekompletná rekonštrukcia spŕšky chýba rekonštrukcia X_{max} a energie
- Možnosť konverzie súborov z Offline do ESAF

Obr. 20: Základná štruktúra softvérového rámca Offline [37].

Obr. 21: Príklad konfigurácie sekvencie modulov [37].

[37] S. Argirò et al. "The offline software framework of the Pierre Auger Observatory". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580.3 (2007), pp. 1485 – 1496. ISSN: 0168-9002. DOI : 10.1016/j.nima.2007.07.010..

Program PattRecoVis

- Vizualizácia simulovaných a rekonštruovaných spŕšok
- Volanie/testovanie rekonštrukčných algoritmov
- Univerzálne rozhranie pre definíciu popis detektora (aktuálne implementované pre ESAF)
- Univerzálne rozhranie pre rekonštrukčné algoritmy

Obr. 24: Program PattRecoVis.

Obr. 25: Implementácia rozhrania pre ESAF v PattRecoVis.

Atmosferické spŕšky (1)

- Spŕšky sú produkované pri vstupe častíc kozmického žiarenia do atmosféry.
 - Kolízie primárnych častíc spôsobujú kaskádu sekundárnych kolízií.
 - Zapríčiňujú excitáciu molekúl atmosféry, ktoré deexcitujú fluorescenciou (najmä v UV spektre)
- Kozmické žiarenie môže byť tvorené hadrónmi, fotónmi gamma žiarenia, neutrínami

Obr. 27: Schéma vývoja extenzívnej atmosferickej spršky [38].

Atmosferické spŕšky (2)

Experimenty pre detekciu UHECR

- Hybridné detektory -Observatórium Pierra Augera, Teleskopové pole
- Polia časticových detektorov
- Fluorescenčné detektory

Obr. 29: Observatórium Pierra Augera SD [39]

Obr. 30: Teleskopové pole - Fluorescenčný detektor [40]

[39] The Pierre Auger Collaboration et al. "The Pierre Auger Cosmic Ray Observatory". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 798 (Oct. 2015), pp. 172–

213. DOI: 10.1088/1475-7516/2014/08/019

[40] Tokuno, H., Tameda, Y., Takeda, M., Kadota, K., Ikeda, D., Chikawa, M., ... Zundel, Z. (2012). New air fluorescence detectors employed in the Telescope Array experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 676, 54–65. DOI:10.1016/j.nima.2012.02.044

Počítačové videnie

- Nízka úroveň
 - Prahovanie [12]
 - Metódy založené na: distribúcií intenzít, klastrovaní, entropii, lokálne distribúcie intenzity, atď.
 - Detekcia hrán [13]
 - Metódy založené na: diferenciálnom gradiente, laplaceovský operátor, rezy grafu, aktívne kontúry.
 - Práca s binárnymi obrázkami [14]
 - Filtrovanie napr. Gauss, Median, Mode
 - Detekcia rohov napr. Harris
- Stredná úroveň
 - Aplikácia HEP:
 - hľadanie dráhy častíc Houghovou transformáciou [15], alternatíva sledovanie dráhy - napr. Kalmanov filter [16,17].
- Porozumenie obrazu NN
 - Klasifikácia prúdov (jets) v LHC experimente [17] (vstup pixely z hardónového kalorimetra, 30×30 px), alebo aj ALICE experimente [15].

Literatúra (1)

[1] Todor Stanev. "Ultrahigh Energy Cosmic Rays". In: arXiv (2011), pp. 1–40. DOI: 10.1103/RevModPhys.83.907. ArXiv: 1103.0031.

[2] D. J. Bird et al. "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". In: apj 441 (Mar.1995), pp. 144–150. DOI : 10.1086/175344. eprint: astro-ph/9410067

[3] The JEM-EUSO collaboration. Report on the phase A study 2010, Collaboration Mission Report. Tech. rep. Dec. 2010.

[4] JEM-EUSO Collaboration et al. (2015). The JEM-EUSO mission: An introduction. Experimental Astronomy, 40(1), 3–17. DOI: 10.1007/s10686-015-9482-x

[5] C.M. Bishop. Pattern Recognition and Machine Learning. Information science and statistics. Springer, 2013. ISBN: 9788132209065

[6] E.R. Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Academic Press. Elsevier, 2012. ISBN: 9780123869081.

[7] A.K. Jain, R. P W Duin, and Jianchang Mao. "Statistical pattern recognition: a review". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22.1 (2000), pp. 4–37. ISSN : 0162-8828. DOI : 10.1109/34.824819

[8] K.S. Fu. Syntactic pattern recognition and applications. Prentice-Hall advanced reference series: Computer science. Prentice-Hall, 1982. ISBN : 9780138801205

[9] Roberto Brunelli. Template Matching Techniques in Computer Vision. Wiley-Blackwell, 2009. DOI : 10.1002/9780470744055.

[10] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd Edition). Wiley-Interscience, 2000. ISBN : 0471056693

[11] Maureen Caudill. "Neural Networks Primer, Part I". In: AI Expert 2.12 (Dec. 1987), pp. 46-52. ISSN : 0888-3785

[12] Mehmet Sezgin et al. "Survey over image thresholding techniques and quantitative performance evaluation". In: Journal of Electronic imaging 13.1 (2004), pp. 146–168.

1993, pp. 42-55. ISBN: 978-1-4899-3216-7. DOI: 10.1007/978-1-4899-3216-7_3.

[13] E.R. Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Academic Press. Elsevier, 2012. ISBN : 9780123869081

[14] Milan Sonka, Vaclav Hlavac, and Roger Boyle. "Data structures for image analysis". In: Image Processing, Analysis and Machine Vision. Boston, MA: Springer US,

[15] Alice Collaboration et al. "ALICE: Physics Performance Report, Volume II". In: Journal of Physics G: Nuclear and Particle Physics 32.10 (2006), pp. 1295–2040. ISSN: 0954-3899. DOI: 10.1088/0954-3899/32/10/001.

[16] R. Mankel. "A Concurrent track evolution algorithm for pattern recognition in the HERA-B main tracking system". In: Nucl. Instrum. Meth. A395 (1997), pp. 169–184. DOI: 10.1016/S0168-9002(97)00705-5.

[17] Leandro G. Almeida et al. "Playing tag with ANN: boosted top identification with pattern recognition". In: Journal of High Energy Physics 2015.7 (July 2015), p. 86. ISSN: 1029-8479. DOI: 10.1007/JHEP07(2015)086. arXiv: 1501.05968

[18] Jens Zimmermann. "Statistical Learning in High Energy and Astrophysics". Dissertation. Ludwig-Maximilians-Universitat, 2005.

[19] Riggi, S., & Caruso, R. (2007). A neural network approach to event-by-event cosmic ray primary mass identification. Proceedings of Science, 23–27.

Literatúra (2)

[20] Devi Parikh and C Lawrence Zitnick. "The role of features, algorithms and data in visual recognition". In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE. 2010, pp. 2328–2335.

[21] Y. Bengio, A. Courville, and P. Vincent. "Representation Learning: A Review and New Perspectives". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.8 (2013), pp. 1798–1828. DOI : 10.1109/tpami.2013.50

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. "Deep learning". In: Nature 521.7553 (2015), pp. 436–444. ISSN : 0028-0836. DOI: 10.1038/nature14539.

[23] Hubel, D. H.; Wiesel, T. N. (1968-03-01). "Receptive fields and functional architecture of monkey striate cortex". The Journal of Physiology. 195 (1): 215–243. doi:10.1113/jphysiol.1968.sp008455. ISSN 0022-3751.

[24] Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" (PDF). Biological Cybernetics. 36 (4): 193–202. doi:10.1007/BF00344251

[25] Yann LeCun et al. "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: Advances In Neural Information Processing Systems (2012), pp. 1–9. ISSN: 10495258. DOI: 10.1016/j.protcy.2014.09.007.

[27] Daniel Maturana and Sebastian Scherer. "VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition". In: Iros (2015), pp. 922–928. ISSN: 21530866. DOI : 10.1109/IROS.2015.7353481.

[28] Luís A. Alexandre. "3D Object Recognition Using Convolutional Neural Networks with Transfer Learning Between Input Channels". In: Intelligent Autonomous Systems 13: Proceedings of the 13th International Conference IAS-13. Ed. by EmanueleMenegatti et al. Cham: Springer International Publishing, 2016, pp. 889–898. ISBN: 978-3-319-08338-4. DOI: 10.1007/978-3-319-08338-4_64

[29] Andrej Karpathy et al. "Large-scale video classification with convolutional neural networks". In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2014), pp. 1725–1732. ISSN : 10636919. DOI: 10.1109/CVPR.2014.223. ArXiv: 1412.0767

[30] A. Aurisano et al. "A convolutional neural network neutrino event classifier". In: Journal of Instrumentation 11.09 (Sept. 2016), P09001–P09001. ISSN : 1748-0221. DOI: 10.1088/1748-0221/11/09/P09001. ArXiv: 1604.01444

[31] Evan Racah et al. "Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks". In: ArXiv e-prints (2016), pp. 1–8. arXiv: 1601.07621.

[32] Luke de Oliveira et al. "Jet-Images – Deep Learning Edition". In: Journal of High Energy Physics (2015). DOI: 10.1007/JHEP07(2016)069. ArXiv: 1511.05190.

[33] Francesco Fenu. "A Simulation Study of the JEM–EUSO Mission for the Detection of Ultra–High Energy Cosmic Rays". Doctoral thesis. Eberhard Karls Universitat Tubingen, 2013.

Literatúra (3)

[34] Medina-Tanco, G., Asano, K., Cline, D., Ebisuzaki, T., Inoue, S., Lipari, P., ... Collaboration, F. (2009). JEM-EUSO Science Objectives. In Proc. of the 31st Intl. Cosmic Ray Conference (pp. 1–4). Lodz. Retrieved from http://arxiv.org/abs/0909.3766

[35] Jozef Vasilko et al. "Pattern recognition study for different levels of UV background in JEM-EUSO experiment". In: Proceedings, 34th International Cosmic Ray Conference (ICRC 2015).

[36] F. Fenu et al. "The JEM–EUSO energy and Xmax reconstruction performances". In: Proceedings, 34th International Cosmic Ray Conference (ICRC 2015).

[37] S. Argirò et al. "The offline software framework of the Pierre Auger Observatory". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580.3 (2007), pp. 1485 – 1496. ISSN: 0168-9002. DOI : 10.1016/j.nima.2007.07.010..

[38] Peter K. F. Grieder. Exentsive Air Showers and High Energy Phenomena. Springer Nature, 2010. DOI: 10.1007/978-3-540-76941-5.

[39] The Pierre Auger Collaboration et al. "The Pierre Auger Cosmic Ray Observatory". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 798 (Oct. 2015), pp. 172–213. DOI: 10.1088/1475-7516/2014/08/019

[40] Tokuno, H., Tameda, Y., Takeda, M., Kadota, K., Ikeda, D., Chikawa, M., ... Zundel, Z. (2012). New air fluorescence detectors employed in the Telescope Array experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 676, 54–65. DOI:10.1016/j.nima.2012.02.044