Microservices with

@RoboNovotny

monolith

= default development
mode

" €3sy to run
= easy to deploy
" easy to understand

monolith?

‘y&l’ U o L e

ER o BT AY G

= easily deploy changes?
= modularization?

= scalability?

ith?

0O
C
O
-

“routines are constructed
on rational principles so
that families fit together
as building blocks.

safely regaro
components as black
boxes”

-- M. D. Mcllroy (1968)

component

around business functionality
easily replaceable

easily maintainable
explicit AP

- N

i
=
Ul
PR
rd
X - "
2 a

of
M s b ia, r
Y -~ }

Az] .; 9 d . z>£1, r‘
& 5 gb,, SRy J

SR —

r—

v umx utlhtles'P

==~

tijHusqvarna ———— T /

s e

microservices!

microservice

low overhead
replaceable
maintainable
explicit AP
designed for failure

maintained by a single team

real-life Spring microservice

"small executable Spring-Boot
based JAR with REST AP/

challenges

versioning | repositories | deployment

| continuous integration | integration

testing | configuration management |
monitoring | expensive cross-

component communication
components | lots of RAM

tfaileo
AP

versioning | centralized logging |

responsibility fights

DEMO

running

640 GB RAM ought to be enough for
everybody

testing

Integration tests
Integration tests
Integration tests

communication

Cross-component communication
1) is expensive
Z2) hard to test
3) prone to failure

"dumb pipes, smart endpoints”

HTTP | lightweight messaging

"dumb pipes, smart endpoints”

use transparent payloads

epic fial

your components will tail

monitoring

establish monitoring very early

centralized logging

log cross-component communication

responsibility fights

which service will contain
the functionality?

configuration

large-scale deployment
requires centralized configuration

deployment

continuous integration Is a must

large scale-deployment

one-line deployment

shared libraries

treat it like a binary dependency
Use proper repos

versioning

establish a versioning scheme

experiences

= expect high mental step to “micro”

= hellgate of tools opens

= juggle lots of challenges at the same
time

positives

= enforces best practices
= allows scaling

= rewrite over maintain wins in long-
term

" makes you devops
= makes you polyglot

positives

= monolith looks suddenly easy

it

@RoboNovotny

