

Moderná sieťová infraštruktúra a jej dizajn Aktuálne trendy v informatike

Peter Mesjar, Systems Engineer, CCIE 17428

pmesjar@cisco.com

Apríl 2017

The Challenge. I want to design and deploy a network.

How can I anticipate what the network might need to do in the future so I don't have to revisit my design and deployment?

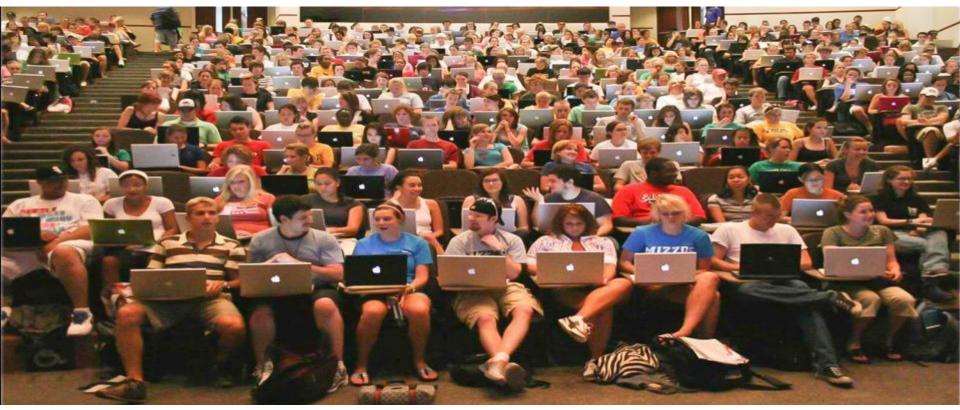
How can I do it quickly?

How do I manage it?

ululu cisco

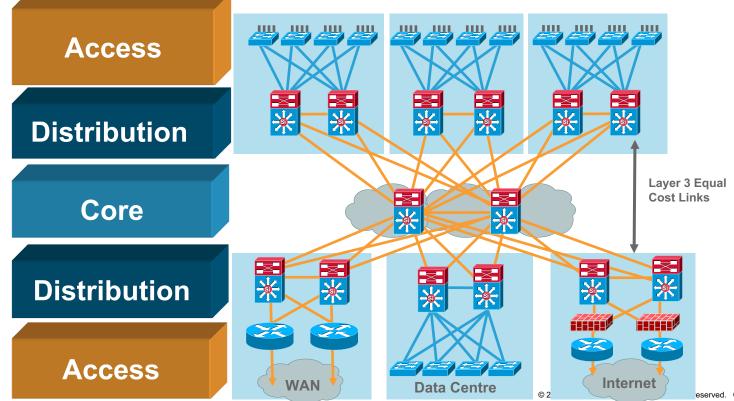
How do I put it all together?

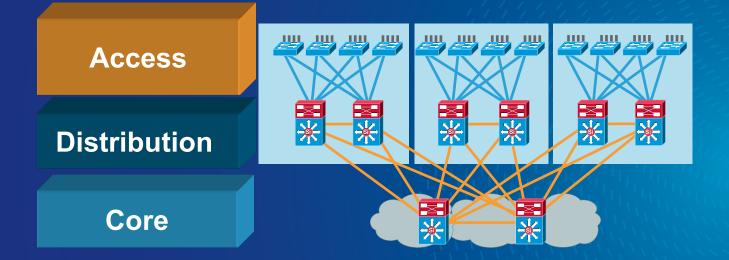
Which platform should I choose? Many to choose from at each place in the network Catalvst 650 Catalyst 2960-X Catalyst 3 Catalyst 3650 ASR1000 Catalyst 450L ISR 445. What are the best practices?


Next-Generation Campus Design

Unified Communications Evolution

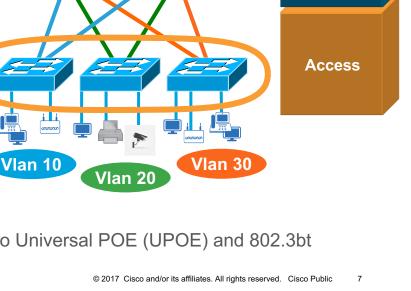
- VoIP and Video is now a mainstream technology
- Ongoing evolution to the full spectrum of Unified Communications
- High-definition executive communication application requires stringent Service-Level Agreement (SLA)
 - Reliable service—high availability infrastructure
 - Application service management—QoS


The New Normal


High-Availability Campus Design

Structure, Modularity, and Hierarchy

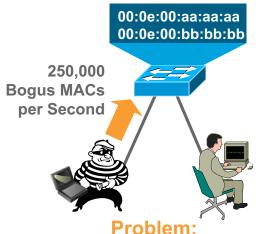
www.cisco.com/go/cvd/campus



Agenda for today – starting with Access layer

Access Layer Design

- Not only about connecting PCs
 - Application Visibility is also important
- Ethernet network access
 - Wired 10/100/1000/mGig(802.3bz)
 - Supports Wireless LAN 802.11a/b/g/n/ac access
- Simplified and flexible design
 - Layer 2 edge for applications that require spanned vlaps
 - Avoid Spanning Tree loops for resiliency
- Policy enforcement point
 - Secure network and applications from malicious attacks
 - · Identity based policies and packet marking
- Advanced Technologies support
 - Deliver PoE services: 802.3af(PoE), 802.3at(PoE+), Cisco Universal POE (UPOE) and 802.3bt
 - QoS enforcement to protect multimedia applications



Core

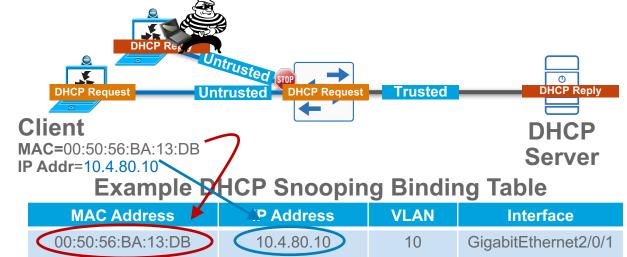
Distribution


Port Security

Cutting Off MAC-Based Attacks

Script Kiddie Hacking Tools Enable Attackers Flood Switch CAM Tables with Bogus Macs; Turning the VLAN into a Hub and Eliminating Privacy

Switch CAM Table Limit Is Finite Number of Mac Addresses


Solution:

Port Security Limits MAC Flooding Attack and Locks Down Port and Sends an SNMP Trap

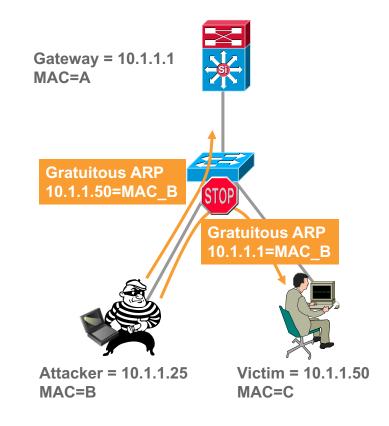
```
switchport port-security
switchport port-security maximum 100
switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity
```

DHCP Snooping Binding Table

Protection Against Rogue/Malicious DHCP Server

Configure in the global configuration:

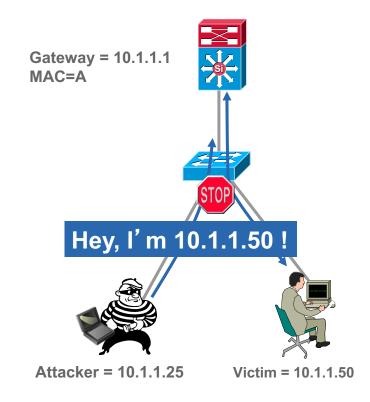
ip dhcp snooping vlan [data vlan],	[voice vlan]
no ip dhcp snooping information op	tion
ip dhcp snooping	


Configure on the client interface:

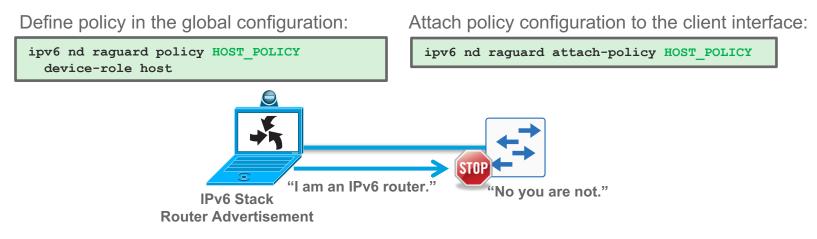
ip dhcp snooping limit rate 100

Dynamic ARP Inspection

Protection Against ARP Poisoning


- Dynamic ARP inspection protects against ARP poisoning (ettercap, dsnif, arpspoof)
- Uses the DHCP snooping binding table
- Tracks MAC to IP from DHCP transactions
 - For non-DHCP MAC/IP Addresses you can write ARP ACL's to protect those devices
- Rate-limits ARP requests from client ports; stop port scanning
- Drop bogus gratuitous ARPs; stop ARP poisoning/MItM attacks

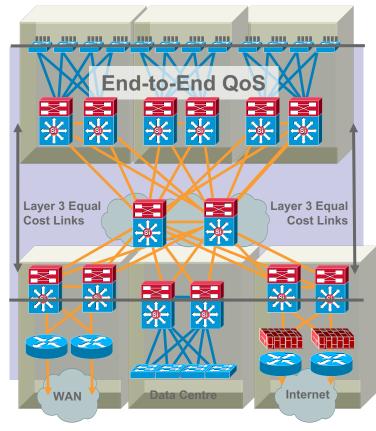
IP Source Guard


Protection Against Spoofed IP Addresses

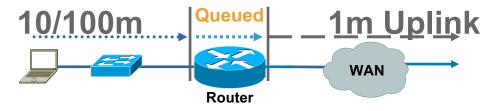
- IP source guard protects against spoofed IP addresses
- Uses the DHCP snooping binding table
- Tracks IP address to port associations
- Dynamically programs port ACL to drop traffic not originating from IP address assigned via DHCP

IPv6 Router Advertisement Guard

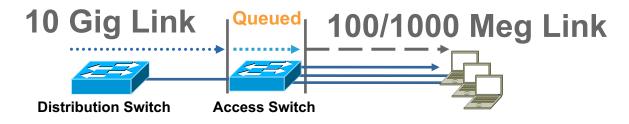
Client Facing Interface Configuration


 If a port device role is configured as host, IPv6 First Hop Security (FHS) RA Guard drops all IPv6 Router Advertisement messages

12


- Useful even for IPv4-only networks
- Other port device role options include: monitor, router, and switch BRKSEC-2003: IPv6 Security Threats and Mitigations; BRKSEC-3003: Advanced IPv6 Security in the LAN
 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public

Best Practices - Quality of Service


- Must be deployed end-to-end to be effective; all layers play different but equal roles
- Ensure that mission-critical applications are not impacted by link or transmit queue congestion
- Aggregation and rate transition points
 must enforce QoS policies
- Multiple queues with configurable admission criteria and scheduling are required

Transmit Queue Congestion

100 Meg in 1 Mb/s out—Packets Serialize in Faster than They Serialize Out Packets Queued as They Wait to Serialize out Slower Link

10 Gig In 100/1000 Meg out—Packets Serialize in Faster than They Serialize Out Packets Queued as They Wait to Serialize out Slower Link

Auto QoS VoIP—Making It Easy ...

Configures QoS for VoIP on Campus Switches

Access-Switch(config-if)#auto qos voip ? cisco-phone Trust the QoS marking of Cisco IP Phone cisco-softphone Trust the QoS marking of Cisco IP SoftPhone trust Trust the DSCP/CoS marking

Access-Switch(config-if)#auto qos voip cisco-phone Access-Switch(config-if)#exit

interface FastEthernet1/0/21
srr-queue bandwidth share 10 10 60 20
srr-queue bandwidth shape 10 0 0 0
mls qos trust device cisco-phone
mls qos trust cos
auto qos voip cisco-phone
end

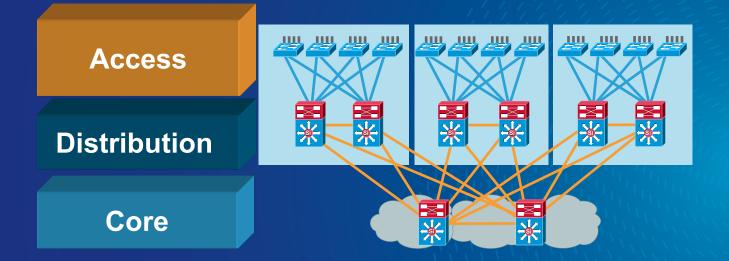
Access Layer Platform Options

Catalyst 4500-E with Supervisor 8-E / 8L-E

- Modular switch with 1:1
 redundancy for all critical systems (supervisors, power supplies, fans)
- Stateful switchover provides subsecond supervisor recovery
- Multiple Ethernet Connectivity options (fiber or copper with various densities)
- Quad Sup RPR (new)
- In-Service Software Upgrades
- PoE, PoE+, and UPOE
- Energy Efficient Ethernet
- Campus Fabric Edge (8-E)

Catalyst 3850 and Catalyst 3650

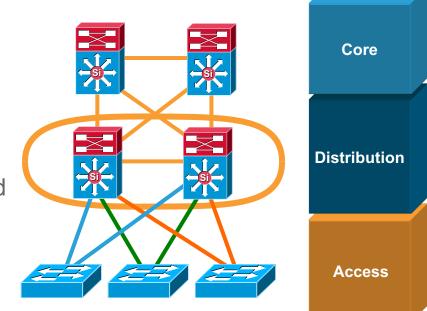
- Fixed configuration stackable switch with central config and control
- Stateful switchover provides subsecond recovery
- Modular Uplinks (3850), power supplies, and fans
- StackWise480 and StackPower (3850), StackWise160 (3650)
- Up to 9 switches in a stack
- PoE, PoE+, UPOE
- Campus Fabric Border/Edge

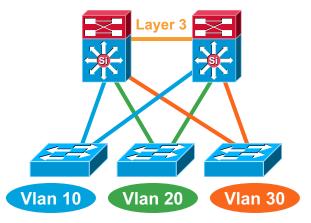

Catalyst 2960-X and Catalyst 2960-XR

- Fixed configuration stackable switch with central config and control
- Up to 8 switches in a stack
- FlexStack+ 80G stacking (Stack Module Required)
- Stack or stack member failure recovery max 1 -2 seconds
- PoE and PoE+

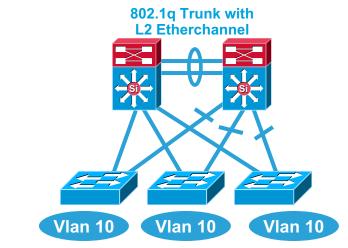
•

Redundant Power Supply and
 L3 Access option (XR)


Agenda for today – Access connects do Distribution

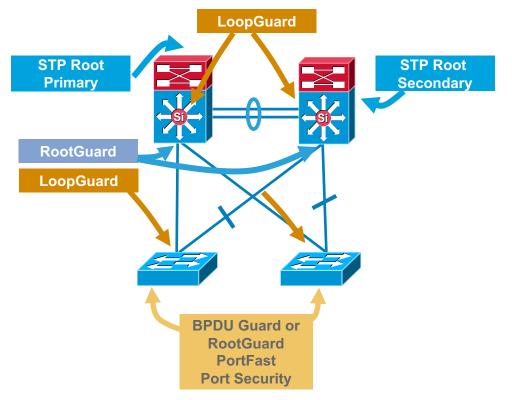

Distribution Layer

Policy, Convergence, QoS, and High Availability


- Availability, load balancing, QoS and provisioning are the important considerations at this layer
- Aggregates wiring closets (access layer) and uplinks to core
- Protects core from high density peering and problems in access layer
- Route summarization, fast convergence, redundant path load sharing
- HSRP or GLBP to provide first hop redundancy

Multilayer Network Design Layer 2 Access with Layer 3 Distribution

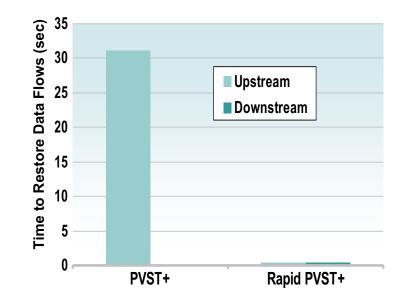
- Each access switch has unique VLANs
- No Layer 2 loops, no etherchannel
- Layer 3 link between distribution
- No blocked links



- At least some VLANs span multiple access switches
- Layer 2 loops
- Layer 2 and 3 running over link between distribution
- Blocked links, even with etherchannels

STP Hardening

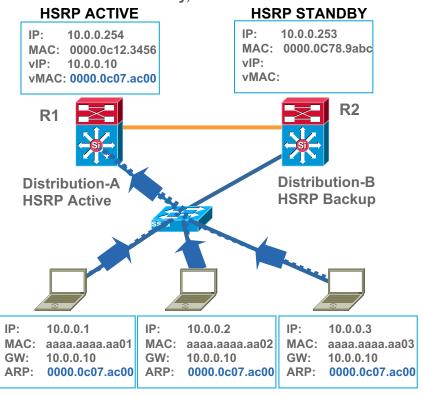
Spanning Tree Should Behave the Way You Expect


- Place the root where you want it
 - Root primary/secondary macro
- The root bridge should stay where you put it
 - RootGuard
 - LoopGuard
 - UplinkFast
 - UDLD
- Only end-station traffic should be seen on an edge port
 - BPDU Guard
 - RootGuard
 - PortFast
 - Port-security

Optimising L2 Convergence

PVST+, Rapid PVST+ or MST

- Rapid-PVST+ greatly improves the restoration times for any VLAN that requires a topology convergence due to link UP
- Rapid-PVST+ also greatly improves convergence time over backbone fast for any indirect link failures
- PVST+ (802.1d)
 - Traditional spanning tree implementation
- Rapid PVST+ (802.1w)
 - Scales to large size (~10,000 logical ports)
 - Easy to implement, proven, scales
- MST (802.1s)
 - Permits very large scale STP implementations (~30,000 logical ports)
 - Not as flexible as rapid PVST+



First Hop Redundancy with HSRP

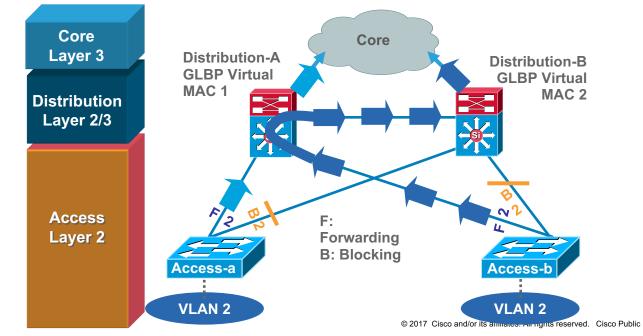
RFC 2281 (March 1998)

- A group of routers function as one virtual router by sharing one virtual IP address and one virtual MAC address
- One (active) router performs packet forwarding for local hosts
- The rest of the routers provide hot standby in case the active router fails
- Standby routers stay idle as far as packet forwarding from the client side is concerned
- Use preemption to avoid black-hole
 while network reconverges


R1—Active, Forwarding Traffic; R2—Hot Standby, Idle

Optimising Convergence: VRRP, HSRP, GLBP

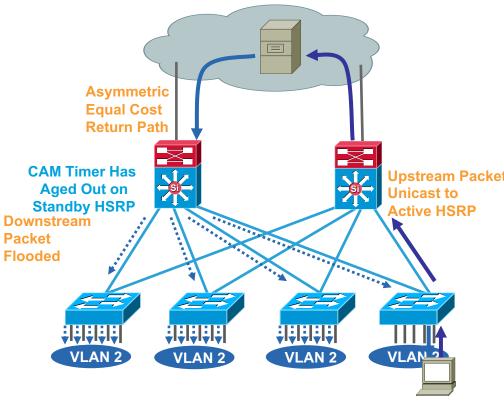
Mean, Max, and Min—Are There Differences?


- VRRP not tested with sub-second timers and all flows go through a common VRRP peer; mean, max, and min are equal
- HSRP has sub-second timers; however all flows go through same HSRP peer so there is no difference between mean, max, and min
- GLBP has sub-second timers and distributes the load amongst the GLBP peers; so 50% of the clients are not affected by an uplink failure

If You Span VLANS, Tuning Required

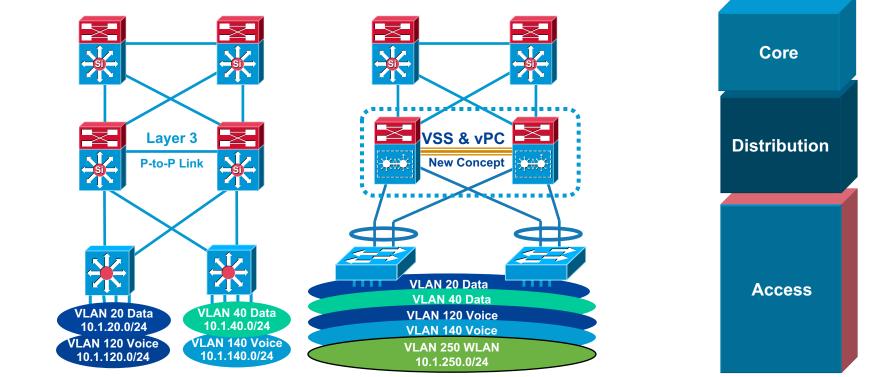
By Default, Half the Traffic Will Take a Two-Hop L2 Path

- Both distribution switches act as default gateway
- Blocked uplink caused traffic to take less than optimal path

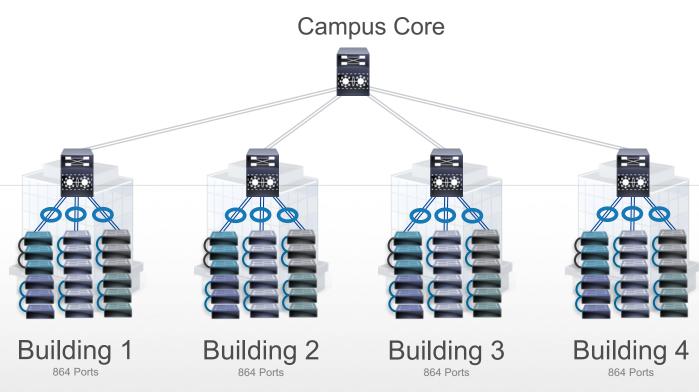


24

Asymmetric Routing (Unicast Flooding)


Affects redundant topologies with shared L2 access

- One path upstream and two paths downstream
- CAM table entry ages out on standby HSRP
- Without a CAM entry packet is flooded to all ports in the VLAN
- To prevent this do not stretch VLANs – If you have to:
 - Tune ARP and CAM aging timers; CAM timer exceeds ARP timer
 - Bias routing metrics to remove equal cost routes


Routed Access and Virtual Switching System

Evolutions of and Improvements to Existing Designs

See <u>BRKCRS-3035 - Advanced Enterprise Campus Design: Virtual Switching System</u> (VSS) and/or its affiliates. All rights reserved. Cisco Public 24 See <u>BRKCRS-3036 - Advanced Enterprise Campus Design: Routed Access</u>

VSS Core with Access Stacking

Network Design

84 Physical Devices
5 VSS pairs and 24 stacks
29 Total Devices of Image
& Configuration Management
24 Port-Channels
3456 User Ports

Design Considerations:

STP Loop Prevention CAM & ARP Tuning FHRP Tuning / Priority Routing Protocol Tuning PIM Tuning / DR priority

Distribution Layer Platform Options

Density, Resilience, Throughput, Scalability, Reduced failover times

•

•

•

Catalyst 6500/6807 Supervisor 6T/2T (VSS)

- Physically separate and resilient supervisors, line cards, and power supplies
- Clusters two physical chassis into a single logical entity
- Highest density Gigabit and 10 Gigabit Ethernet
- 40 Gigabit Ethernet
- Stateful Switchover (SSO)
 + Quad-Supervisor SSO
 (VS4O) available option
- VSS and Multi-Chassis EtherChannel for highly resilient connectivity

Catalyst 6880-X Catalyst 6840-X (VSS)

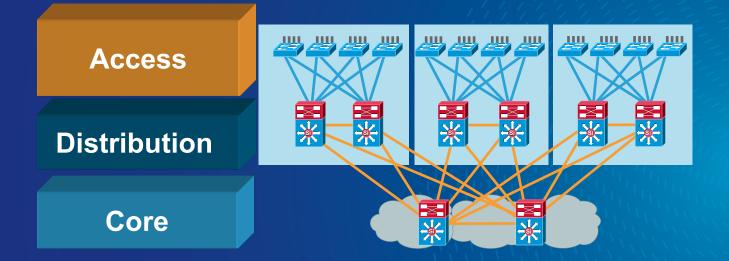
Extensible fixed base chassis, with resilient line card expansion and power supplies

Clusters two physical chassis into a single logical entity

Used to aggregate a smaller number of Gigabit or 10 Gigabit access layer switches

- Stateful Switchover between chassis
- Enhanced Fast Software Upgrade (eFSU) capable

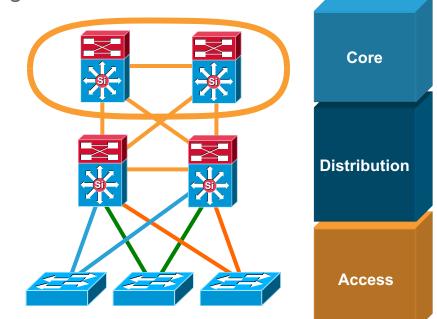
Catalyst 4500-E Supervisor 7, 8 (VSS) Catalyst 4500-X (VSS)


- Physically separate chassis, line cards, and power supplies, with fixed/modular options
- VSS-two physical chassis into a single logical entity
- SSO between chassis
- 4500-E Quad Sup RPR (new)
- Used to aggregate a smaller number of Gigabit or 10 Gigabit access layer switches
- In Service Software Upgrades (ISSU)

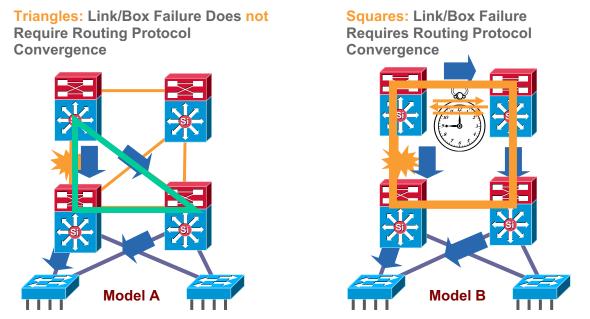
Catalyst 3850-12S Catalyst 3850-(12/24/48)XS (Stack)

- Centralized stack configuration, control, and management plane
- Used to aggregate a smaller number of Gigabit access layer switches
- Distributed, per switch, Layer 2/Layer 3 forwarding, CAM tables, and BPDU processing
- UADP Wireless Capable

One common approach to configuring and operating the Distribution Layer


Agenda for today – do you always need Core?

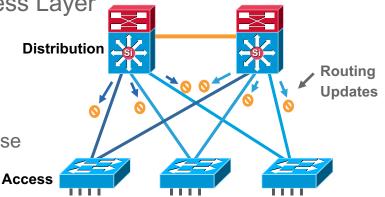
Core Layer


Scalability, High Availability, and Fast Convergence

- Backbone for the network—connects
 network building blocks
- Performance and stability vs. complexity less is more in the core
- Aggregation point for distribution layer
- Separate core layer helps in scalability during future growth
- Keep the design technology-independent

Best Practice - Build Triangles not Squares

Deterministic vs. Non-Deterministic

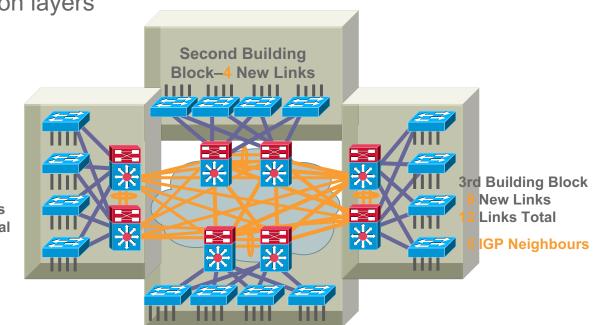


- Layer 3 redundant equal cost links support fast convergence
- Hardware based—fast recovery to remaining path
- Convergence is extremely fast (dual equal-cost paths: no need for OSPF or EIGRP to recalculate a new path) ^{© 2017} Cisco and/or its affiliates. All rights reserved. Cisco Public
 Cisco Public

Best Practice - Passive Interfaces for IGP

Limit IGP Peering Through the Access Layer

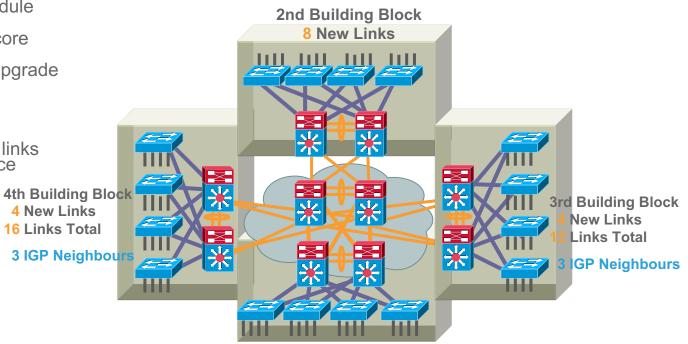
- Limit unnecessary peering using passive interface:
 - Four VLANs per wiring closet
 - 12 adjacencies total
 - Memory and CPU requirements increase with no real benefit
 - · Creates overhead for IGP


OSPF Example: EIGRP Example: Router (config) #routerospf 1 Router (config) #routereigrp 1 Router (config-router) #passive-Router (config-router) #passiveinterfaceVlan 99 interfaceVlan 99 Router (config) #routerospf 1 Router (config) #routereigrp 1 Router (config-router) #passive-Router (config-router) #passiveinterface default interface default Router(config-router)#no passive-Router(config-router)#no passiveinterface Vlan 99 interface Vlan 99

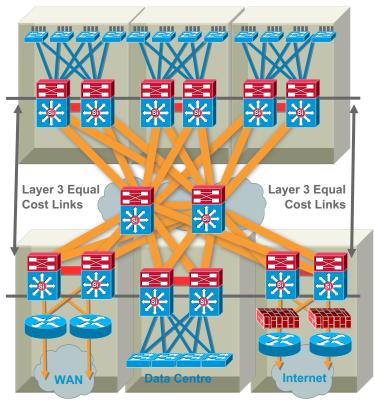
Do I Need a Core Layer?

It's Really a Question of Scale, Complexity, and Convergence

- No Core
- Fully-meshed distribution layers
- Physical cabling requirement
- Routing complexity


4th Building Block 12 New Links 24 Links Total 8 IGP Neighbours

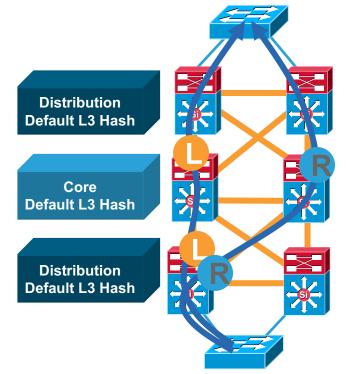
Do I Need a Core Layer?


It's Really a Question of Scale, Complexity, and Convergence

- Dedicated Core Switches
- Easier to add a module
- · Fewer links in the core
- Easier bandwidth upgrade
- Routing protocol peering reduced
- Equal cost Layer 3 links for best convergence

EtherChannels or Equal Cost Multipath

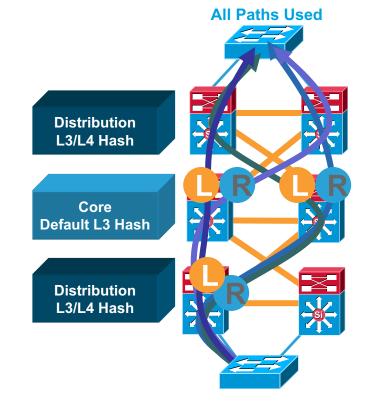
Why 10/40/100Gigabit Interconnects



- More links = more routing peer relationships and associated overhead
- EtherChannels allow you to reduce peers by creating single logical interface to peer over
- However, a single link failure might not be taken into consideration by routing protocols and overload is possible
- Single 10/40/100 gigabit links address both problems. Increased bandwidth without increasing complexity or compromising routing protocols ability to select best path

CEF Load Balancing

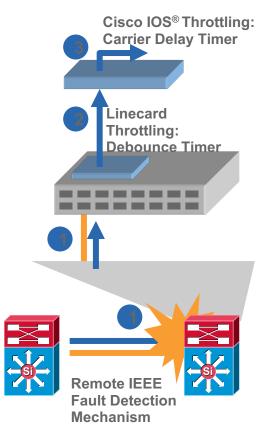
Avoid Under Utilizing Redundant Layer 3 Paths


Redundant Paths Ignored

- CEF polarization: without some tuning CEF will select the same path left/left or right/right
- Imbalance/overload could occur
- Redundant paths are ignored/underutilized
- The default CEF hash input is L3
- We can change the default to use L3 + L4 information as input to the hash derivation

CEF Load Balancing

Avoid Under Utilizing Redundant Layer 3 Paths



- The default will for Sup720/32 and latest hardware (unique ID added to default). However, depending on IP addressing, and flows imbalance could occur
- Alternating L3/L4 hash and L3 hash will give us the best load balancing results
- Use simple in the core and full simple in the distribution to add L4 information to the algorithm at the distribution and maintain differentiation tier-to-tier

Redundancy and Protocol Interaction

Link Redundancy and Failure Detection

- Direct point-to-point fibre provides for fast failure detection
- IEEE 802.3z and 802.3ae link negotiation define the use of remote fault indicator and link fault signalling mechanisms
- Bit D13 in the Fast Link Pulse (FLP) can be set to indicate a physical fault to the remote side
- Do not disable auto-negotiation on GigE and 10GigE interfaces
- The default debounce timer on GigE and 10GigE fibre linecards
 is 10 msec
- The minimum debounce for copper is 300 msec
- Carrier-delay
 - 3560, 3750, and 4500-0 msec
 - 6500—leave it set at default

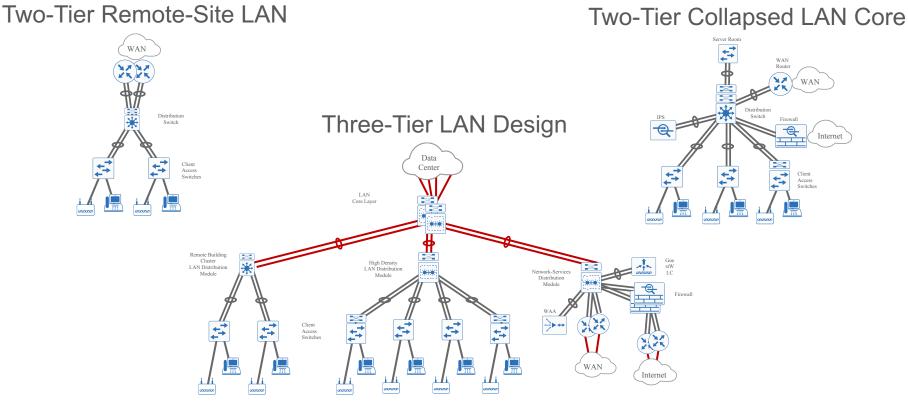
Core Layer Platform Options

Catalyst 6807-XL, Supervisor 6T/2T (VSS Option)

- LAN Core platform with consistent IOS interface and feature set as rest of LAN allowing single logical and resilient platform using Virtual Switching System (VSS)
- Redundant supervisor and SSO support, VSS, and Quad-Supervisor SSO available (VS4O), and load sharing power supplies
- Wide Range of connectivity from Gigabit Ethernet, GEC, 10 Gb Ethernet, 10-GEC, and 40 Gb Ethernet
 - Up to 440G/slot (6807-XL / Sup 6T)

•

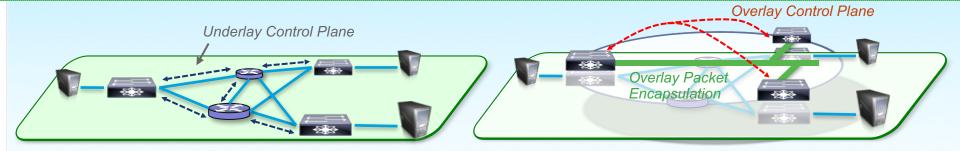
•


•

VSS and Multi-Chassis EtherChannel for highly resilient connectivity and scalable distributed forwarding

Nexus 7700 with Supervisor 2E (2x Independent Chassis)

- LAN Core platform allowing independent control planes and a consolidated DC and LAN core possible through Virtual Device Contexts (VDC)
- Resilient supervisor and SSO support, and load sharing power supplies
- Wide Range of connectivity from Gigabit Ethernet, GEC, High Density 10 Gb Ethernet, 10-GEC, 40Gb and 100Gb Ethernet
- In Service Software Upgrades
- Data Center NX-OS heritage


You Now Have the Tools to Build This! (and more)

Campus Fabric Introduction

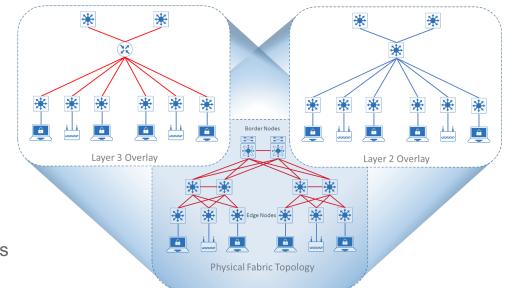
What exactly is a Fabric?

Separate the Forwarding Plane from the Services Plane

Simple Transport Forwarding

- Physical Devices and Paths
- Intelligent Packet Handling
- Maximize Network Availability
- Simple and Manageable
- · Also called "Underlay"

Flexible Virtual Services


- Mobility Track End-points at Edges
- Scalability Reduce core state
 Distribute state to network edge
- Flexibility and Programmability
 - Reduced number of touch points
- · Also called "Overlays"

Campus Fabric Key Advantages

- Simplified Provisioning
 - Plug and play deployment of devices
 - Apply best practice configurations via smart CLI or programmability models
- Host Mobility
 - Stretched subnets using anycast default gateway
- Secure Segmentation
 - Build secure boundaries for users and things
- Policy enforcement
 - · Based on your identity not IP address

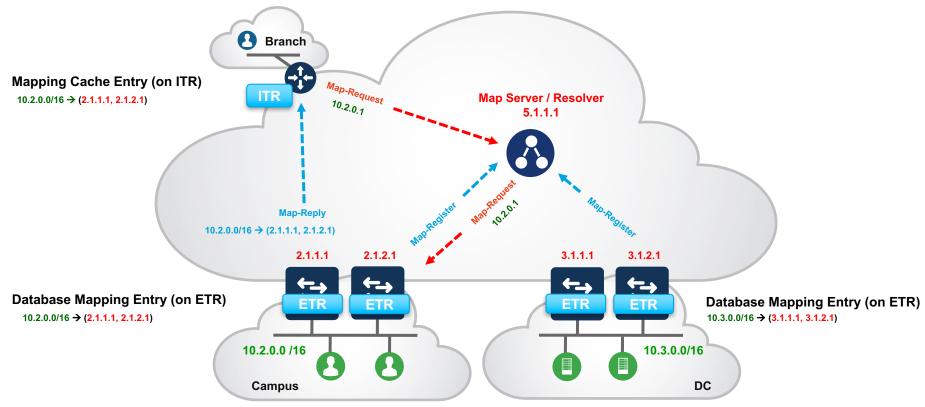
Cisco Validated Design Guide for Campus Fabric:

http://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/Oct2016/CVD-CampusFabricDesign-2016OCT.pdf

What is unique about Campus Fabric?

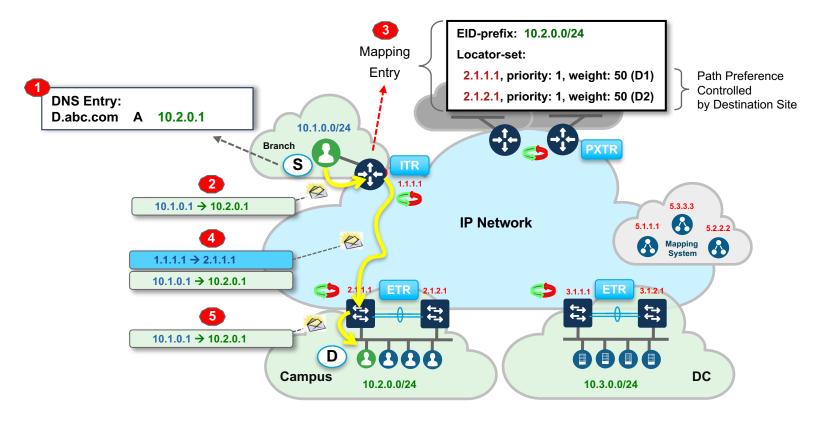
LISP based Control-Plane VXLAN based Data-Plane

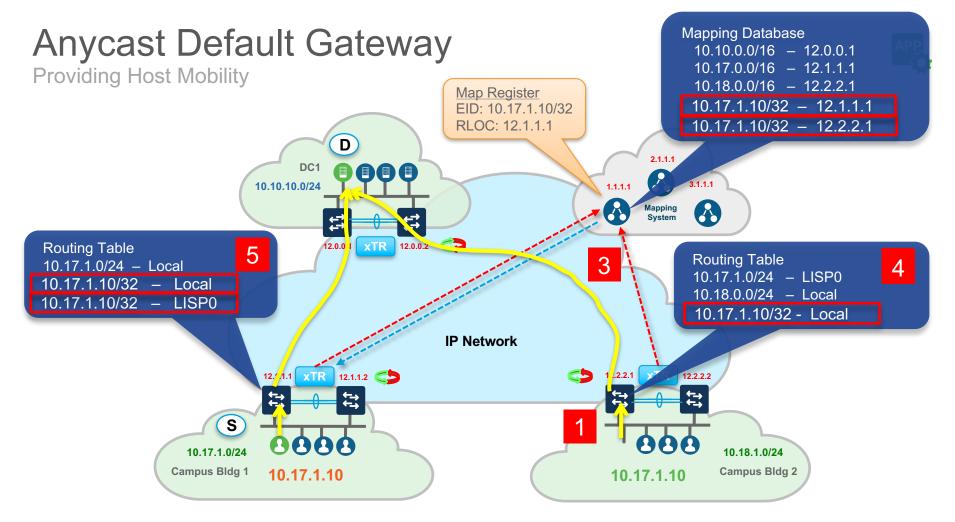
Cisco TrustSec based Policy-Plane


Key Differences

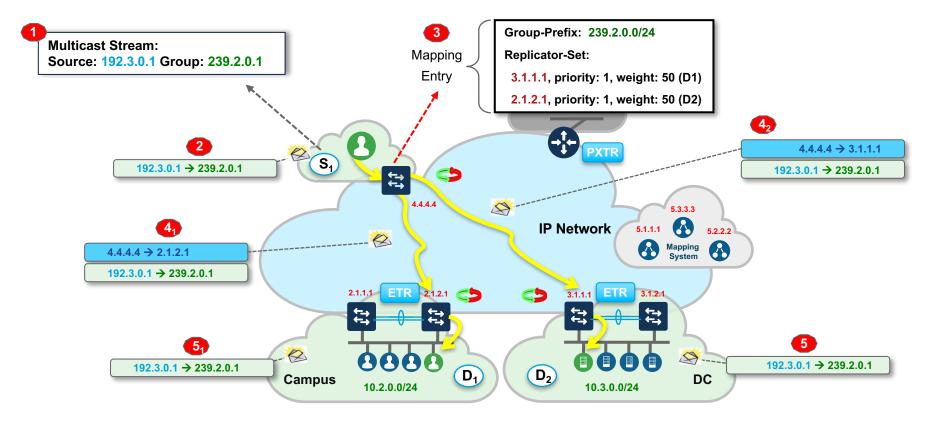
- L2 + L3 Overlay -vs- L2 or L3 Only
- Host Mobility with Anycast Gateway
- Adds VRF + SGT into Data-Plane
- Virtual Tunnel Endpoints (No Static)
- No Topology Limitations (Basic IP)

LISP Mapping process

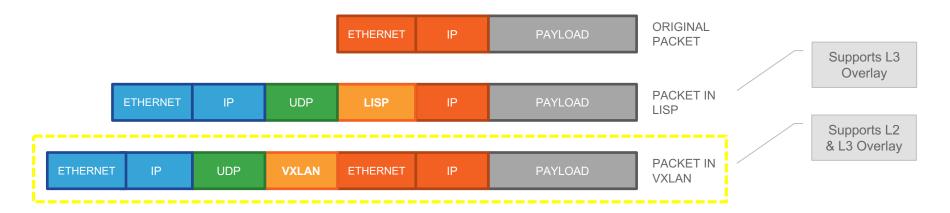

Map Register & Resolution

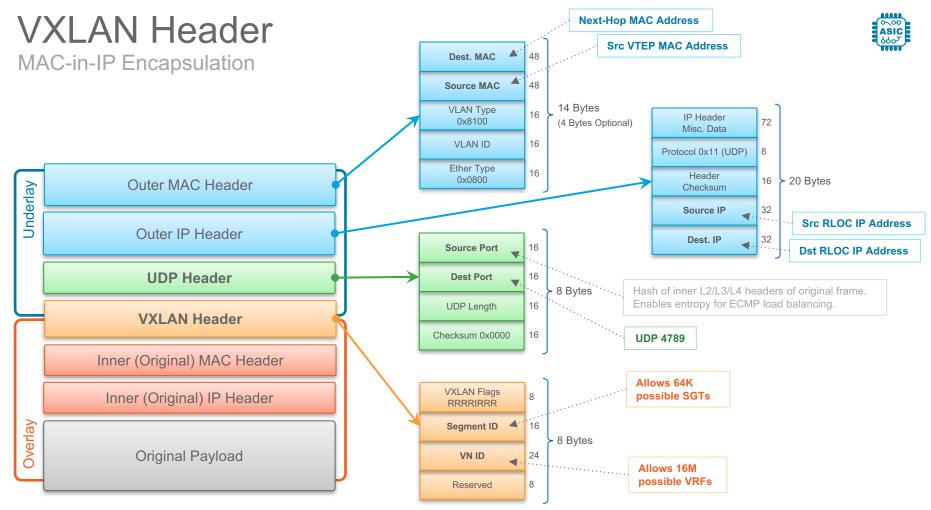


Traffic forwarding

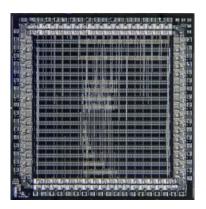


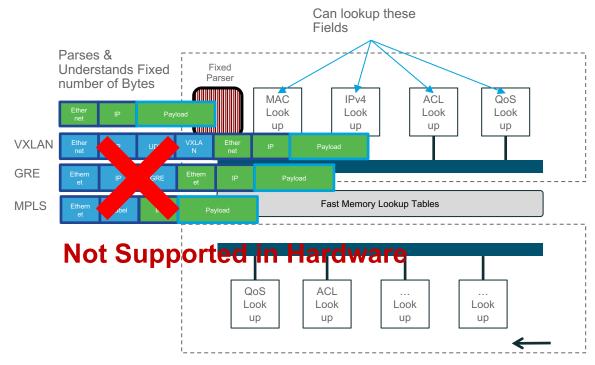
LISP Multicast



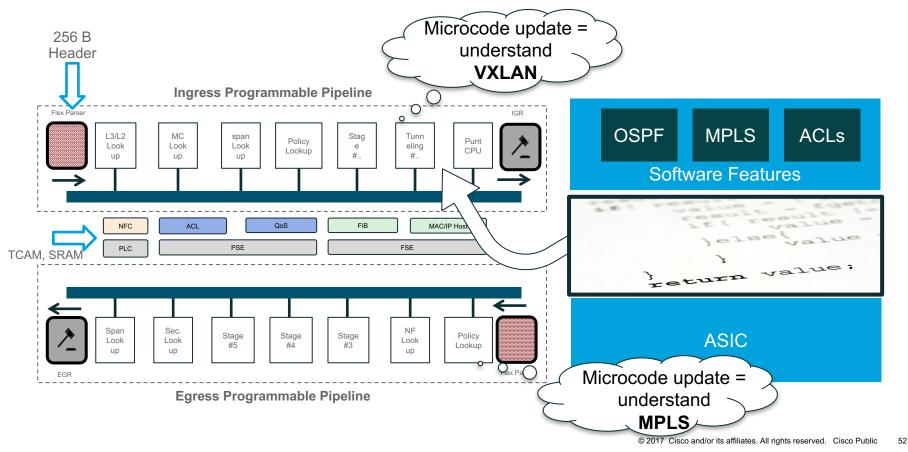

How LISP and VXLAN interact?

Forwarding traffic across fabric


Control-Plane based on LISP Data-Plane based on VXLAN



Traditional ASIC Pipeline


Traditional

ASIC

Fixed Pipeline Building a new ASIC takes a lot of time

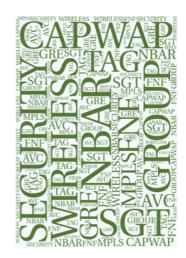
UADP ASIC – Programmable Protocol Independent Packet Processor

.....

1G/10G Ethernet

240G **Stacking Capacity** Packet Buffer

128 Bit


Encryption

6MB

24K Netflow Records

56G Bandwidth

Catalyst 3850 Copper

Fiber

First Programmable ASIC

First Generation of UADP ASIC

Dual Core1G/10G/40GRunning @ 500MHzEthernet

1588

IEEE

240G Stacking Capacity

256 Bit MACSEC Encryption

6MB x2 Packet Buffer

24K x2 Netflow Records

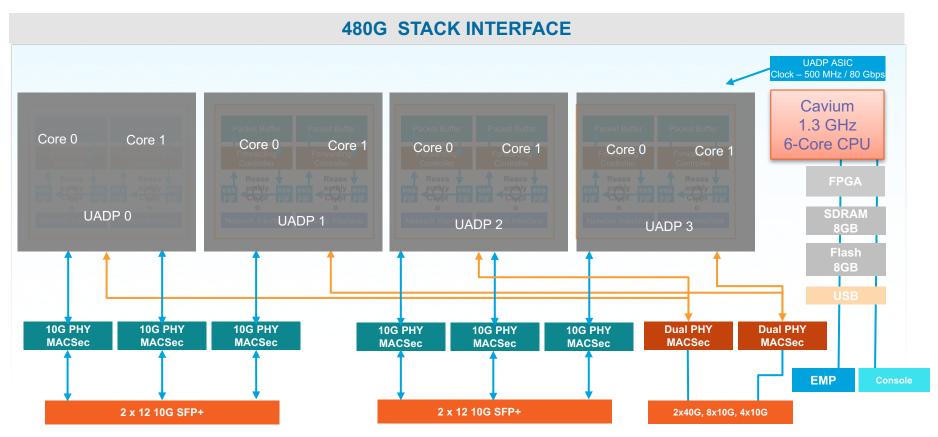
148GE Bandwidth

Stackwise-Virtual GRE AVB MPLS GRE DNS-AS GRE PTP NBAR Wireless 40G 1588 SGT 40G FNF AVC GRE AVB AVB 1588 SGT AVB NBAR NBAR SG. DNS-AS Stackwise-Vi Stackwise-Virtual FnF GRE MPLS ERSPAN ERSPAN SGT PTP

Multigigabit

Catalyst 3850 SFP+

Catalyst 3650 Mini



Catalyst 3650 Multigigabit

Enhanced Version of UADP ASIC

Enhanced Power & Security Capability

Catalyst 3850 SFP+ 48 Port – Block Diagram

Automation in campus networks using APIC-EN (Application Policy Infrastructure Controller Enterprise Module)

APIC-EM: High-Level Controller Architecture

Southbound APIs

CLI, SNMP, Netconf*, RESTconf*, Openstack*, OpenFlow*

Network Element Layer

Swagger

 \odot

APIC - Enterprise Module

Show/Hide List Operations Expand Operations Raw

admin

۰

â

() () **Available APIs** File

Flow Analysis IP Geolocation

ıılıılı cısco

X IP Pool Manager

Inventory -Network Discovery

Network Plug and Play

PKI Broker Service

⇒> Policy Administration Role Based Access Control Scheduler <u>Task</u>

<u>Topology</u>

Inventory
APIC-EM Service API based on the Swagger™ 1.2 specification

Terms of service Cisco DevNet

	device-credential : Device Credential API
	discovery : Discovery API
	host : host API
	interface : Interface API

discovery : Discovery API	Show/Hide List Operations Expand Operations Raw					
host : host API	Show/Hide List Operations Expand Operations Raw					
interface : Interface API	Show/Hide List Operations Expand Operations Raw					
location : Location API	Show/Hide List Operations Expand Operations Raw					
network-device : network-device API	Show/Hide List Operations Expand Operations Raw					
GET /network-device	/network-device Retrieves the network devices by filters					
рит /network-device/brief	Updates network device role					
GET /network-device/count	/network-device/count Petrieves network device count by filters					
/network-device/ip-address/{ipAddress} Retrieves network device by IP address						
r /network-device/location Associates location with device						
GET /network-device/location	/network-device/location Retrieves device location					
GET /network-device/location/{locationld}	work-device/location/{locationld} Retrieves network device by location ID					
GET /network-device/location/{locationld}/{startIndex}/{recordsToReturn}	Retrieves network devices with location by range					
set /network-device/location/{startIndex}/{recordsToReturn}	Retrieves device location range					

I wish this page would..

Try it out!!!

Implementation Notes

Gets the count of network devices filtered by management IP address, mac address, hostname and location name

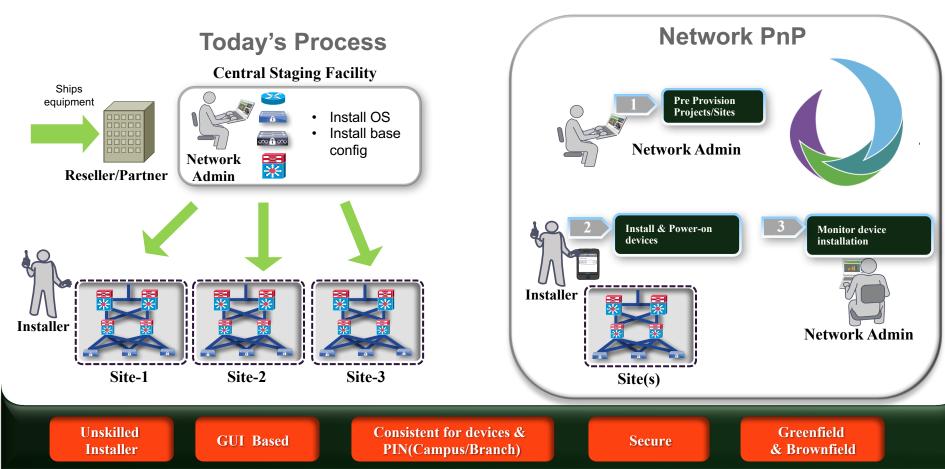
Response Class

Model Model Schema

CountResult {

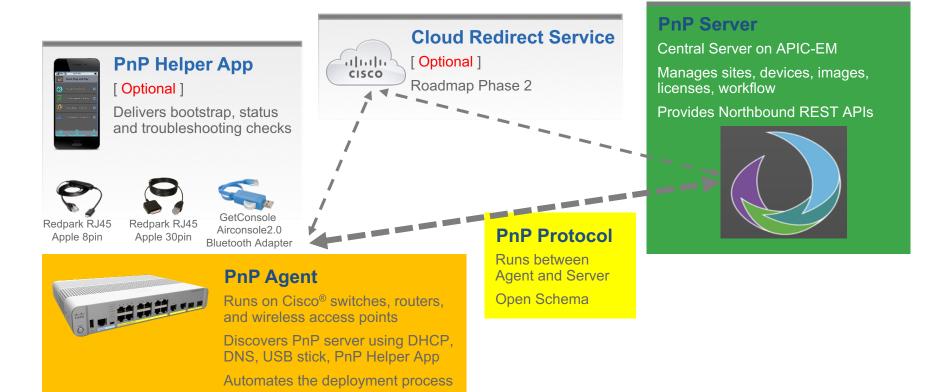
version (string, optional), response (integer, optional)

Response Content Type: application/json

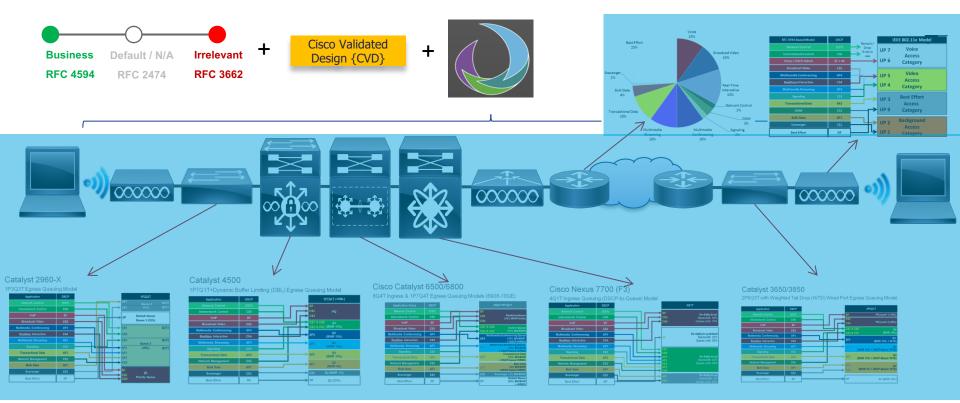

Parameters

Parameter	Value	Description	Parameter Type	Data Type
scope	All	Authorization Scope for RBAC	header	List

Error Status Codes

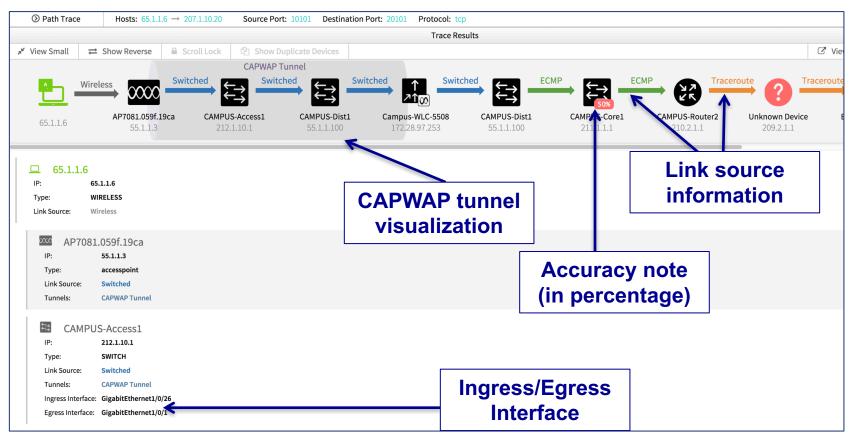

Enter otatao oodee	
HTTP Status Code	Reason
200	This Request is OK
403	This user is Forbidden Access to this Resource
401	Not Authorized Yet, Credentials to be supplied
404	No Resource Found
Try it out! Hide Res	ponse
Request URL	
https://10.49.208	3.171/api/v1/network-device/count
Response Body	
{ "response": 17 "version": "1. }	

Network Plug-n-Play – for Zero Touch Deployment

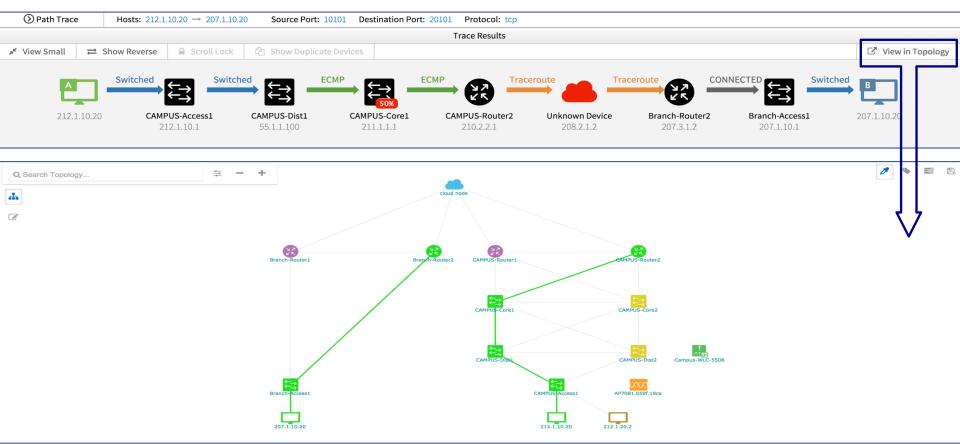


Network Plug and Play (PnP) – Components

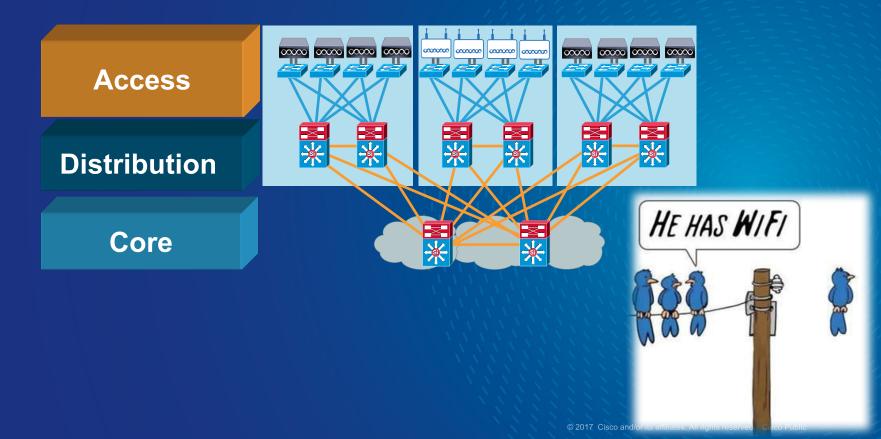
Provision End-to-End DSCP-based Queuing



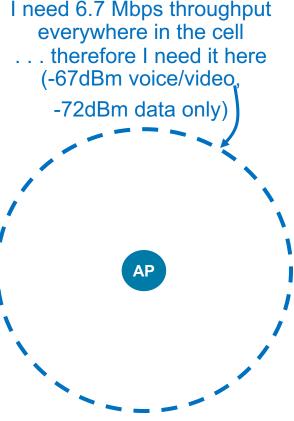
Path Visualization: 5-tuple Input via User Interface

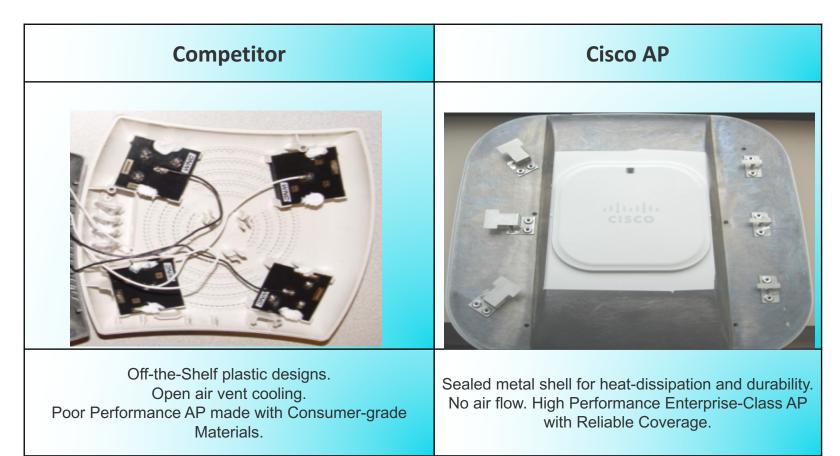

\odot	APIC - Enterprise Mo	dule	API 🌞 🜗 🚇 admin	\$	
•	🛇 Path Trace				
ff Home		Host Source IP	Course Det (Ontional)		
Discovery			Source Port (Optional) Protocol (Optional)		
Device Inventory	\mathbf{c}	65.1.1.6 Host Destination IP	10101 tcp		
Host Inventory	Enter in two host IP's (required) and ports and protocol (optional) to visual	their			
🔆 Topology	path				
IWAN				_	
E Path Trace		1/	Trace Results		
Network Plug and Play	Please enter the fields above and press Trace to view a path.				
	Required Ir	formation	Optional Information		
	SRC and DEST [End-Host or		SRC and DST L4 Port Numbers; L4 Protocol (TCP or UDP)		

Note: L4 Port and Protocol information is optional but highly recommended for accurate path calculation


Path Visualization: Enhanced Application Flow Visibility

Path Visualization: Topology View


Agenda for today – Wireless access

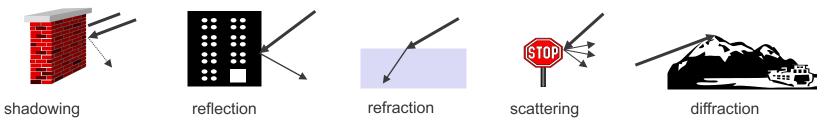

Real Life Example Medical Center

- Density studies show active 12 users / cell on average
 - Expected 2 HD video calls (Skype type)
 - 5 audio calls
 - Other users may browse
- · Let's do the math:
 - 2 HD video calls = 1.2 Mbps x 2 x 2 ways = 4.8 Mbps
 - 5 audio calls... mmm what application?
 - Maybe SfB 30 kbps x 5 x 2 ways = 860 kbps
 - Others are browsing (5 people)... 250 kbps / user?
 - Total = ~6.7 Mbps needed

APs are capable for much more so design for best MOS/QoE (Quality of Experience)

Everything starts from good AP quality...

...and proper AP placement ©



uluilu cisco

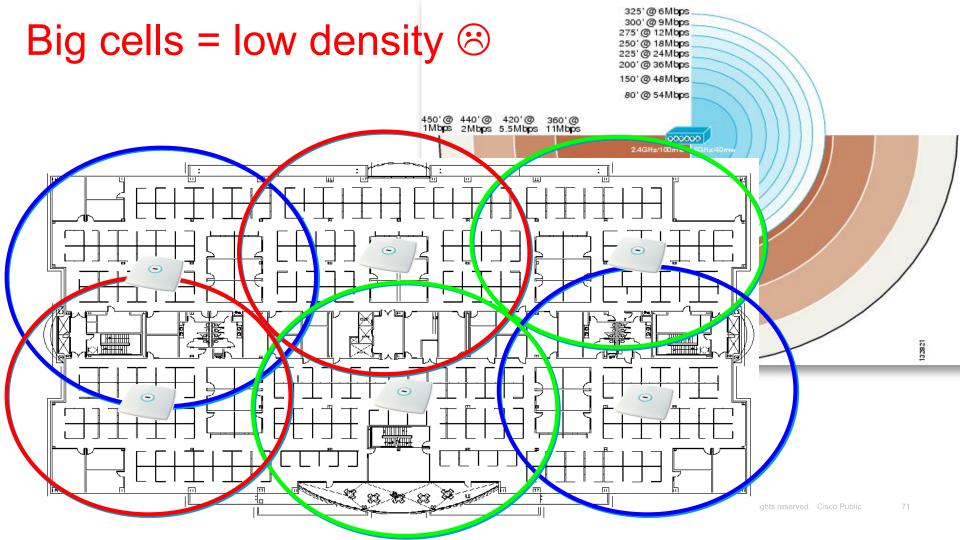
Source: www.bad-fi.com

Proper AP placement comes out of Site Survey

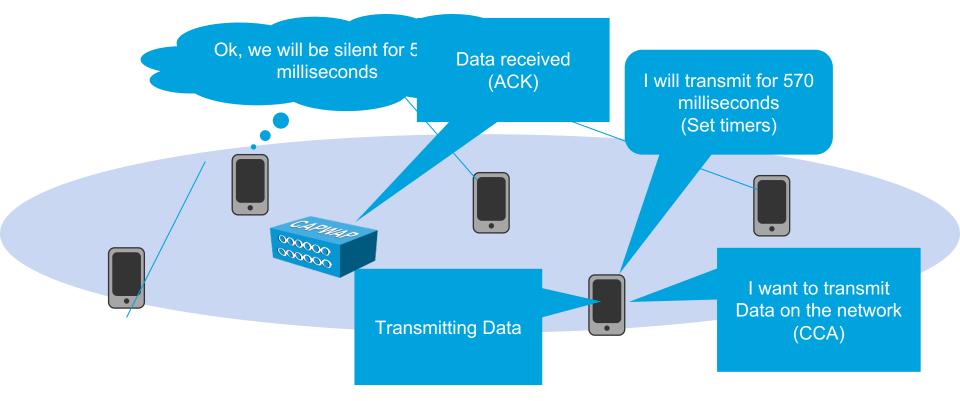
Because a lot happens in the air:

Predictive site surveys

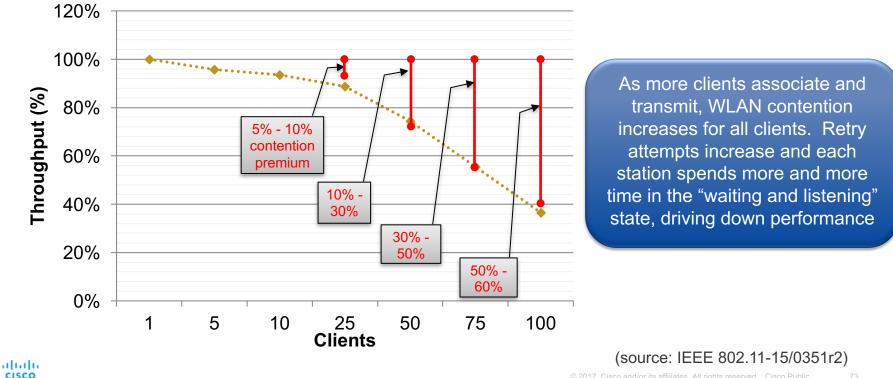
(network plan, simulation) - How many APs, Where, What power, channels, antennas

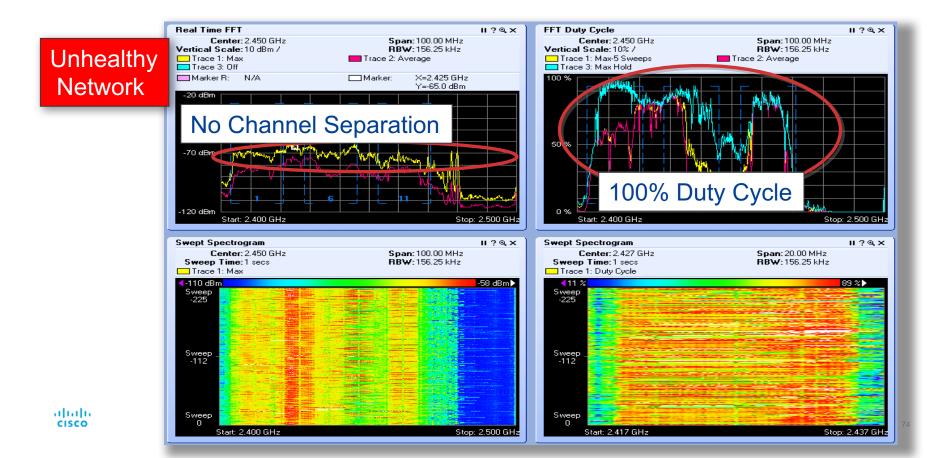

Pre-Deployment site surveys

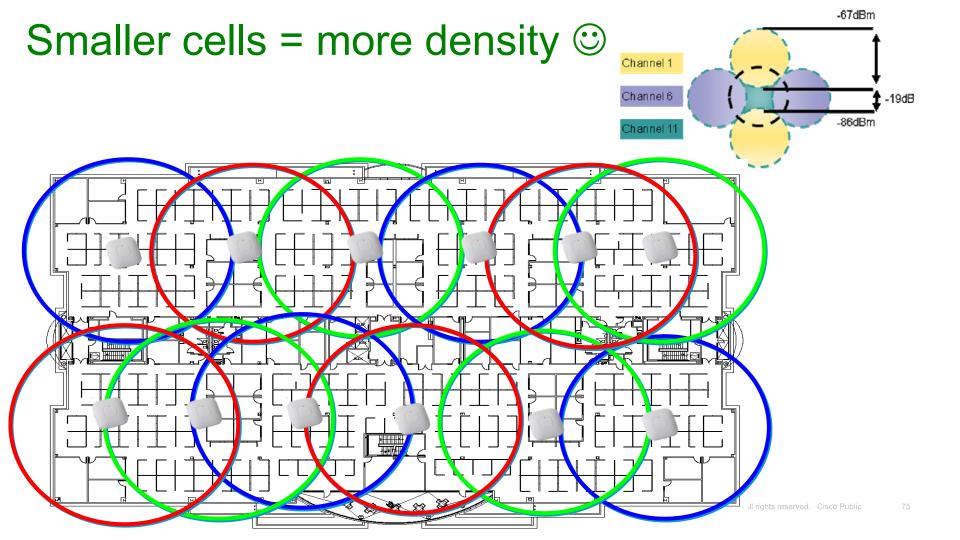
(AP on a stick) – Where to physically mount APs, How does real RF look like, is there any wifi/non-wifi interference


Post-Deployment site surveys (validation) – Does the network actually work?

Periodic site surveys


(health check) – If the network does not work, what has changed?


Accessing the Medium: EDCA & CSMA/CA

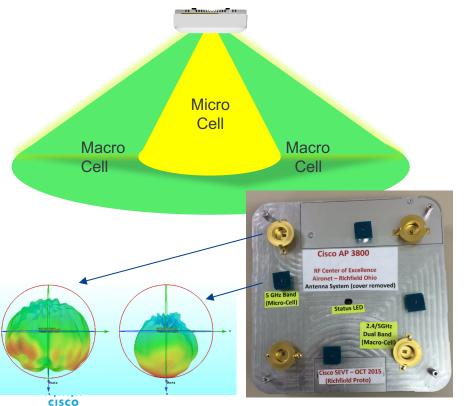


How Much Does Contention Affect Performance The Breaking Point Depends on How Many Clients You Have

Very High Channel Utilization – Cisco CleanAir

Beefing Up Wireless...

http://nsashow.com/FRA/ http://nsashow.com/Hyperlocation/


2010	2015	2016
Cisco AP3500 with CleanAir Technology	Cisco Hyperlocation Module	Cisco Flexible Radio Assignment
	Q	
		· · · · ·

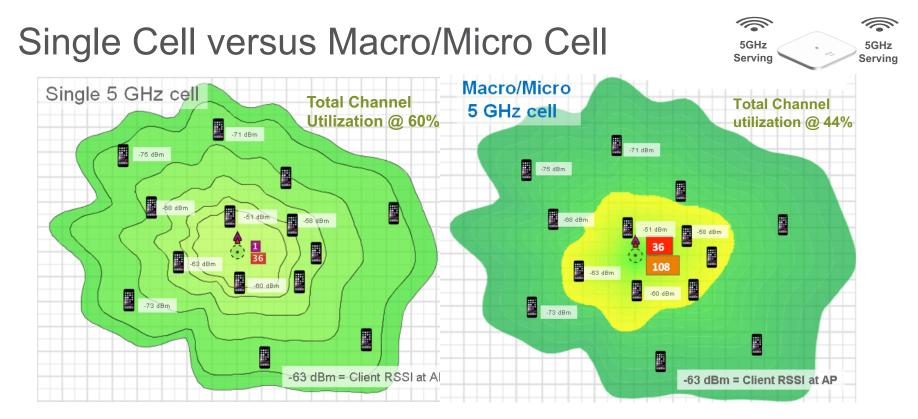
.. Dual 5GHz is King!!!

http://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/802-11ac-solution/miercom-report-cisco-aruba-wave.pdf

Dual 5GHz – Macro/Micro Cell Improves Client Performanceand Capacity

- Improves the Effective Spectrum Usage
- Micro-Radio
 - High Performance 802.11ac Clients near the AP at 802.11ac data rates

5GHz


Serving

5GHz

Serving

- Excellent speed and performance
- Macro-Radio
- All legacy Clients join macro-cell but ...
 - Cells must be isolated – overlap in RF Frequency = shared airtime = lost efficiency
- Begins in the Silicon design, extends to the AP/Antenna selections

Users have a better overall experience on a Dual 5GHz Access Point

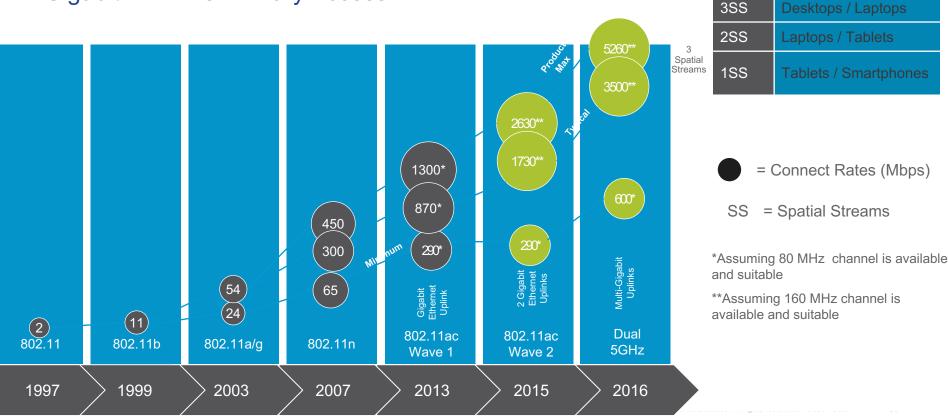
Single channel 36 utilization at 60% (clients far away take longer airtime) Using Micro/Macro (Dual 5 GHz) Channel 36 @ 20% & Channel 108 @ 24% **Take-away -- LESS retries, faster data-rates & less channel utilization Now let's look at External Antenna Models**

Dual 5 GHz "E" model Macro-Macro cells or Micro-Micro cells or any combination

Cable allows for secondary 5 GHz radio antenna to be <u>physically spaced away</u> from the primary radio allowing for Macro-Macro operation

cisco

Stadium antenna deployments for different coverage areas or higher density areas ANT-2566 in different directions or even <u>back-to-back</u> <u>tilted downward</u> for Factory and warehouse deployments


5GHz

Serving

Omni + directional deployments

Wi-Fi Connectivity Speed Timeline Gigabit Wi-Fi As Primary Access

802.11ac Data Rates @ 1,2 & 3 Spatial Streams (Wave1)

802.11n was 450 Mbps at 40 MHz bonded @ 3-SS.

.11ac can achieve <u>nearly the same speed @</u> 1-Spatial Stream

MCS	Modulation	Ratio	20 MHz channel	40 MHz 8 channel	0 MHz channe WAVE-1
			400 ns Gl	400 ns Gl	400 ns Gl
0	BPSK	1/2	7.2	15	32.5
1	QPSK	1 <i>1</i> 2	14.4	30	65
2	QPSK	3/4	21.7	45	97.5
3	16-QAM	1/2	28.9	60	130
4	16-QAM	3/4	43.3	90	195
5	64-QAM	2/3	57.8	120	260
6	64-QAM	3/4	65	135	292.5
7	64-QAM	5/6	72.2	150	325
8	256-QAM	3/4	86.7	180	390
9	256-QAM	5/6	N/A	200	433.3

802	.11	ac	oc				Mb/s		
			ENOT	20	MHz	MHz	Hz 80 MHz		
Data	i Ka	tes sup	PORTED	Guard	Interval	Guard	Interval	Guard	Interval
Spatial Streams	MCS Index	Modulation	Coding	800ns	400ns	800ns	400ns	800ns	400ns
	0	BPSK	1/2	13	14.4	27	30	58.5	65
1	1	QPSK	1/2	26	28.9	54	60	117	130
	2	QPSK	3/4	39	43.3	81	90	175.5	195
	3	16-QAM	1/2	52	57.8	108	120	234	260
1	4	16-QAM	3/4	78	86.7	162	180	351	390
-	5	64-QAM	2/3	104	115.6	216	240	468	520
	6	64-QAM	3/4	117	130	243	270	526.5	585
2	7	64-QAM	5/6	130	144.4	270	300	585	650
83—03J	8	256-QAM	3/4	156	173.3	324	360	702	780
	9	256-QAM	5/6	х	Ж	360	400	780	866.7
	0	BPSK	1/2	19.5	21.7	40.5	45	87.8	97.5
1	1	QPSK	1/2	39	43.3	81	90	175.5	195
	2	QPSK	3/4	58.5	65	121.5	135	263.3	292.5
	3	16-QAM	1/2	78	86.7	162	180	351	390
	4	16-QAM	3/4	117	130	243	270	526.5	585
3	5	64-QAM	2/3	156	173.3	324	360	702	780
-	6	64-QAM	3/4	175.5	195	364.5	405	хх	XX
	7	64-QAM	5/6	195	216.7	405	450	877.5	975
1	8	256-QAM	3/4	234	260	486	540	1053	1170
	9	256-QAM	5/6	260	288.9	540	600	1170	1300

cisco

Using Wave-2 & 4SS

.11ac MCS rates (unlike 802.11n) don't exceed 0-9 -- but rather <u>it is 0-9</u> and then you <u>call out how many Spatial Streams</u>

1 stream (80MHz) is 433 Mbps 2 stream (80MHz) is 866 Mbps 3 stream (80MHz) is 1300 Mbps 4 stream (80 MHz) is 1733 Mbps (Wave 2) 3 stream (160 MHz) is 2340 Mbps (Wave 2)

Note: While 4-SS appears attractive, it is very difficult to maintain a 4-SS link given you cannot beam-form a 4-SS signal given <u>you only have 4 antennas</u>

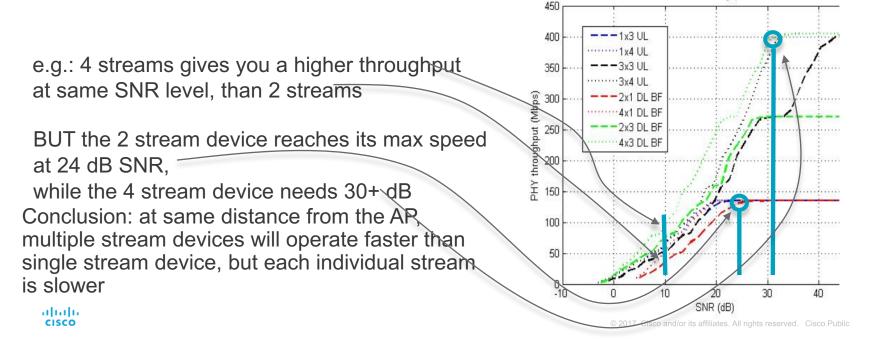
Beamforming requires N+1 antennas

ululu cisco

802	.11;	ac 🗖					Mb/s				
RATE NOT					MHz	40	MHz	80	MHz	160	MHz
Data	ка	Les sup	PORTED	Guard	Interval	Guard	Interval	Guard	Interval	Guard	Interval
Spatial	MCS										
Streams	Index	Modulation	Coding	800ns	400ns	800ns	400ns	800ns	400ns	800ns	400ns
	0	BPSK	1/2	13	14.4	27	30	58.5	65	117	130
	1	QPSK	1/2	26	28.9	54	60	117	130	234	260
	2	QPSK	3/4	39	43.3	81	- 90	175.5	195	351	390
	3	16-QAM	1/2	52	57.8	108	120	234	260	468	520
2	4	16-QAM	3/4	78	86.7	162	180	351	390	702	780
2	5	64-QAM	2/3	104	115.6	216	240	468	520	936	1040
_	6	64-QAM	3/4	117	130	243	270	526.5	585	1053	1170
	7	64-QAM	5/6	130	144.4	270	300	585	650	1170	1300
	8	256-QAM	3/4	156	173.3	324	360	702	780	1404	1560
	9	256-QAM	5/6	•	•	360	400	780	866.7	1560	1733.3
	0	BP5K	1/2	19.5	21.7	40.5	45	87.8	97.5	175.5	195
	1	QPSK	1/2	39	43.3	81	90	175.5	195	351	390
	2	QPSK	3/4	58.5	65	121.5	135	263.3	292.5	526.5	585
	3	16-QAM	1/2	78	86.7	162	180	351	390	702	780
_	4	16-QAM	3/4	117	130	243	270	526.5	585	1053	1170
. 3	5	64-QAM	2/3	156	173.3	324	360	702	780	1404	1560
	6	64-QAM	3/4	175.5	195	364.5	405	• 1	•	1579.5	1755
	7	64-QAM	5/6	195	216.7	405	450	877.5	975	1755	1950
	8	256-QAM	3/4	234	260	486	540	1053	1170	2106	2340
	9	256-QAM	5/6	260	288.9	540	600	1170	1300	•	•
	0	BPSK	1/2	26	28.9	54	60	117	130		
	1	QP5K	1/2	52	57.8	108	120	234	260	Not	all
	2	QPSK	3/4	78	86.7	162	180	351	390		
1	3	16-QAM	1/2	104	115.6	216	240	468	520	Wav	e-z
4	4	16-QAM	3/4	156	173.3	324	360	702	780	lnm	lucts
-	5	64-QAM	2/3	208	231.1	432	480	936	1040	1 °	
	6	64-QAM	3/4	234	260	486	540	1053	1170	supj	port
	7	64-QAM	5/6	260	288.9	540	600	1170	1300		MHz
	8	256-QAM	3/4	312	346.7	648	720	1404	1560	1100	PHIZ
	9	256-QAM	5/6	•	•	720	800	1560	1733.3		

MCS values achieved by clients at various SNR levels

Protocol	Channel	1	2	3	4	5	6	7	8	9	10	
802.11b	20MHz	None	None	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	MCS 1	Modulation Key
802.11a/g	20MHz	None	MCS 0	MCS 0	MCS 1	MCS 2	MCS 2	MCS 2	MCS 2	MCS 3	MCS 3	None = Grey
802.11n	20MHz	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	MCS 1	MCS 2	MCS 2	BPSK = Red
802.11n	40MHz	None	None	None	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	QPSK = Orange
802.11ac	20MHz	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	MCS 1	MCS 2	MCS 2	16-QAM = Yellow
802.11ac	40MHz	None	None	None	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	64-QAM = Blue
802.11ac	80MHz	None	MCS 0	MCS 0	MCS 0	256-QAM = Green						
802.11ac	160MHz	None										
	SNR in dB	11	12	13	14	15	16	17	18	19	20	
802.11b	20MHz	MCS 2	MCS 3	802.11 Type Key								
802.11a/g	20MHz	MCS 4	MCS 4	MCS 4		MCS 5	MCS 5	MCS 5			MCS 7	802.11b
802.11n	20MHz	MCS 3	MCS 3	MCS 3	MCS 3	MCS 4	MCS 4	MCS 4	MCS 5	MCS 5	MCS 6	802.11ag
802.11n	40MHz	MCS 1	MCS 2	MCS 2	MCS 3	MCS 3	MCS 3	MCS 3	MCS 4	MCS 4	MCS 4	802.11n
802.11ac	20MHz	MCS 3	MCS 3	MCS 3	MCS 3	MCS 4	MCS 4	MCS 4	MCS 5	MCS 5	MCS 6	802.11ac
802.11ac	40MHz	MCS 1	MCS 2	MCS 2	MCS 3	MCS 3	MCS 3	MCS 3	MCS 4	MCS 4	MCS 4	
802.11ac	80MHz	MCS 1	MCS 1	MCS 1	MCS 1	MCS 2	MCS 2	MCS 3	MCS 3	MCS 3	MCS 3	
802.11ac	160MHz	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	MCS 1	MCS 2	MCS 2	MCS 3	
	SNR in dB	21	22	23	24	25	26	27	28	29	30	
802.11b	20MHz	MCS 3		MCS 3								
802.11b	20MHz	MCS 7										
802.11a/g	20MHz	MCS 6	MCS 6	MCS 6	MCS 6	MCS 7						
802.11n	40MHz	MCS 5	MCS 5	MCS 6	MCS 7	MCS 7	MCS 7					
802.11ac	20MHz	MCS 6	MCS 6	MCS 6	MCS 6	MCS 7	MCS 7	MCS 7	MCS 7	MCS 8	MCS 8	
802.11ac	40MHz	MCS 5	MCS 5	MCS 6	MCS 7	MCS 7	MCS 7					
802.11ac	80MHz	MCS 4	MCS 4	MCS 4	MCS 5	MCS 5	MCS 6					
802.11ac	160MHz	MCS 3	MCS 3	MCS 3	MCS 4		MCS 4	MCS 5	MCS 5	MCS 6	MCS 6	
002.11100												
000 44	SNR in dB	31	32	33	34	35	36	37	38	39	40	
802.11b	20MHz	MCS 3		MCS 3								
802.11a/g	20MHz	MCS 7										
802.11n	20MHz	MCS 7										
802.11n	40MHz	MCS 7										
802.11ac	20MHz	MCS 9										
802.11ac	40MHz	MCS 7	MCS 8	MCS 8	MCS 9							
802.11ac	80MHz	MCS 7	MCS 7	MCS 7	MCS 7	MCS 8	MCS 8	MCS 9	MCS 9	MCS 9	MCS 9	
802.11ac	160MHz	MCS 6	MCS 6	MCS 6	MCS 7	MCS 7	MCS 7	MCS 7	MCS 8	MCS 8		
	SNR in dB	41	42	43	44	45	46	47	48	49	50	
802.11b	20MHz	MCS 3		MCS 3								
802.11a/g	20MHz	MCS 7										
802.11n	20MHz	MCS 7										
802.11n	40MHz	MCS 7										
802.11ac	20MHz	MCS 9										
802.11ac	40MHz	MCS 9										
802.11ac	80MHz	MCS 9										
802.11ac	160MHz	MCS 9										


http://www.wlanpros.com/mcs-index-802-11n-802-11ac-chart-3/

uluilu cisco

Multiple Streams Make SNR Requirement Higher

802.11n PHY throughput vs. SNR

- Do not think that multiple stream devices are always better
- They may have higher power, but also require higher SNR

So how do these data rates apply in the real world?

Smartphones 210 Mbps* 1 stream (80MHz) is 433 Mbps

Tablets 460 Mbps*

2 stream (80MHz) is 866 Mbps

ahaha

CISCO

High End Laptops +680 Mbps*

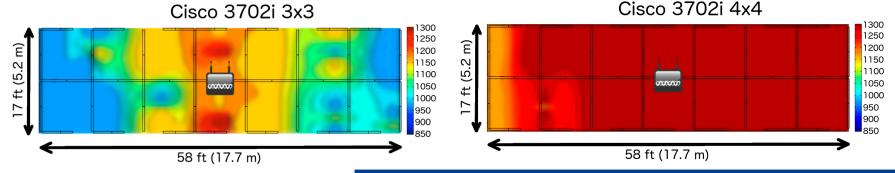
3 stream (80MHz) is 1300 Mbps

Note: The goal is to save physical size and battery life yet <u>increase</u> <u>throughput</u>

4SS	Desktops
355	Desktops / Laptops
2SS	Laptops / Tablets
1SS	Tablets / Smartphones

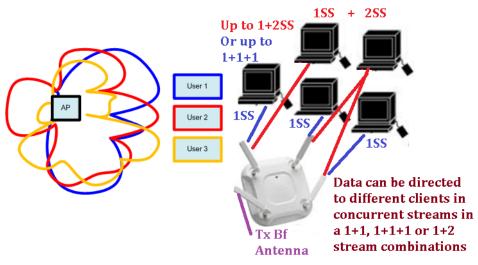
Wave-2 with 4 stream (80 MHz) is 1733 Mbps No 4-ss mobility clients exist in the market today only PCIe (desktop clients))

Real throughput changes dynamically based on number of spatial streams, channel bonding MCS (radio data-rate) negotiated


The actual throughput is less than the MCS data-rate due to overhead

Cisco ClientLink

- Cisco ClientLink is Beamforming at the chip level:
 - Implemented in hardware, no software component, no performance degradation
- ClientLink creates a better quality RF for all clients (a/g/n/ac)
- Do I need a 4x4 AP? Yes, and even more critical with 802.11ac


Best practice: on by default

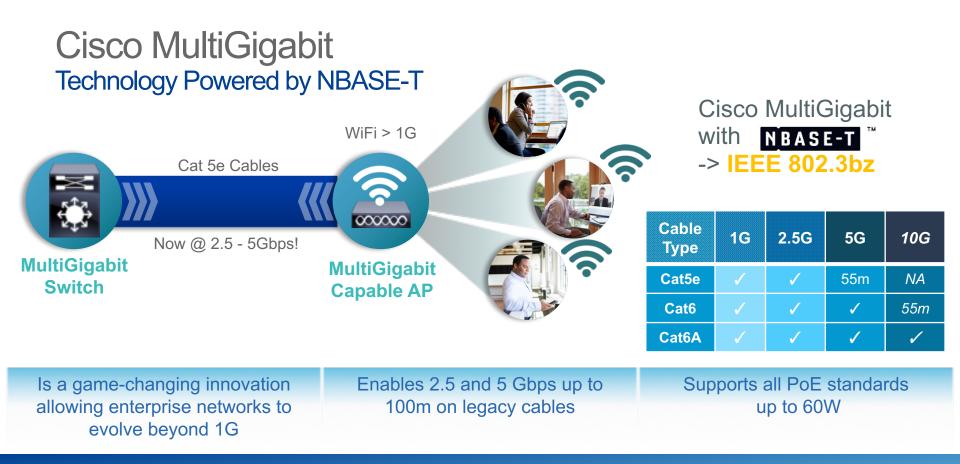
http://www.youtube.com/watch?v=0q_shbSpOIA

Downlink Data Rate Comparison						
Modulation	MCS	Data Rate (Mbps)	Cisco 3700 3x3	Cisco 3700 4x4		
64QAM	m7	975	46%	0%		
256QAM	m8	1170	49%	15%		
256QAM	m9	1300	5%	85%		

MU-MIMO Overview

Performs TxBF, while nulling and also sending similar size data packets using 4th antenna TxBF

AP is using the 4th antenna to beam-form and null. In reality the clients are ideally spaced apart around the AP and not clustered together like the diagram depicts. ad tad ta


Each Wave-2 client sends CSI (Channel State Information) about how to best beam-form to it.

The AP then determines how it will beamform and null to each of the 2-3 clients and then clusters these "ideal" clients into groups.

On a per-packet-basis each member of a group receives a similar size packet at the same time (downstream).

Take away – MU-MIMO is complex and challenging and requires client support

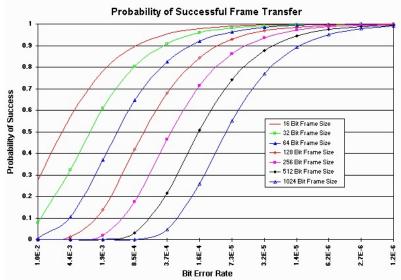
CISCO

Delivers up to 5X Speeds in Enterprise without replacing Cabling Infrastructure

Cisco and Apple Best Practices

RF

- Preferred 5 GHz network design
- Apple client device should observe a minimum of 2 APs with an RSSI measurement of -67 dBm
- Average Channel Utilization < 40%.
- Client SNR >= 25 dB.
- 802.11 retransmissions < 15%, Packet Loss < 1% and Jitter < 100 ms.
- · Cisco highly recommends leaving all MCS rates enabled
- Channel width 40 Mhz or Best for Typical deployments, 20 MHz for High Density


QoS

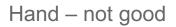
- Enable FastLane : Trust DSCP, Platinum for Unicast, EDCA as FastLane and over 70 lines of Best Practice Configuration
- WMM Set to Required
- AVC profile is AUTOQOS-AVCPROFILE
- 11k and 11v BSS Transition Enabled
- mDNS Snooping Enabled
- FT should be enabled or Adaptive, AKM Set to FT PSK or FT 802.1x

http://www.cisco.com/c/dam/en/us/td/docs/wireless/controller/technotes/8-3/Optimizing_WiFi_Connectivity_and_Prioritizing_Business_Apps.pdf http://www.cisco.com/c/dam/en/us/td/docs/wireless/controller/technotes/8-3/Enterprise_Best_Practices_for_Apple_Devices_on_Cisco_Wireless_LAN.pdf

- 67 dBm? How Much is That in Data Rate?

- And BER is important, because more retries means more chances that the frame will be dropped
- Your job is to limit frame drops to 1% or less to maintain 4.1 MOS
- At -67 dBm RSSI, SNR is typically around 25 dB or more*
- You can run any rate of 24 Mbps and up, and still have good frame success rate
- * well, at least in ideal conditions... see next slides

BTW, where is an antenna on a device?

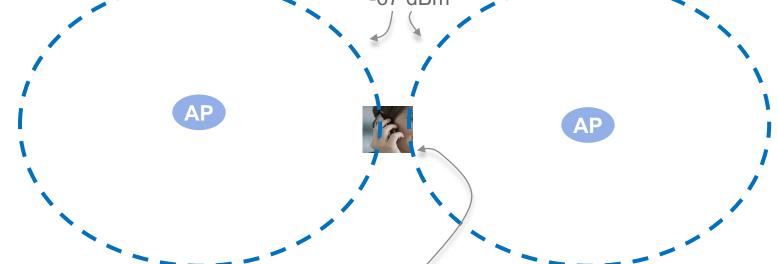

Head – not good

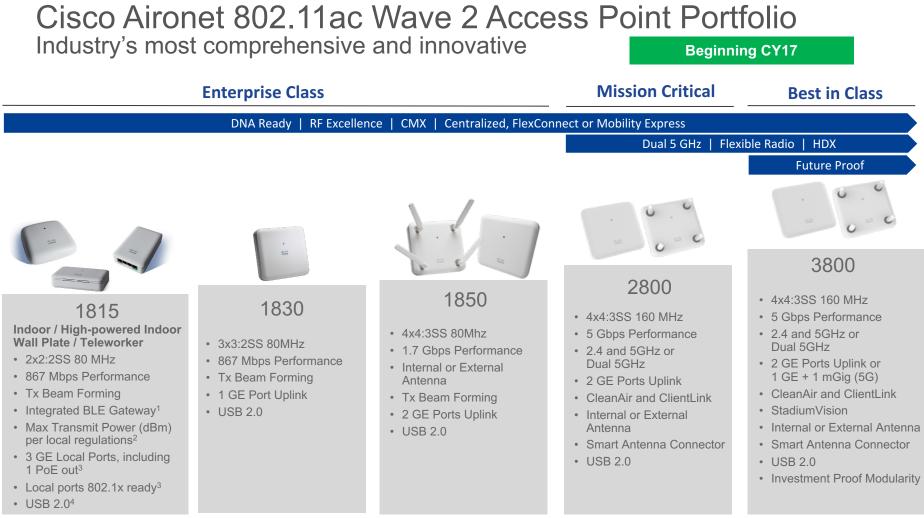
Iphone 5, Antenna is at bottom

HTC One, whole back cover is metal and antenna

Samsung S5, antenna is at bottom, behind button

Hand and Phone Position Affect Signal


Object in Signal Path	Signal Attenuation Through Object
Plasterboard wall	3 dB
Glass wall with metal frame	6 dB
Cinderblock wall	4 dB
Office window	3 dB
Metal door	6 dB
Metal door in brick wall	12 dB
Phone and body position	3 - 6 dB
Phone near field absorption	Up to 15 dB


There can be a 20 dB difference between these photos

Big Hands are Okay if Your Design is Clever

-67 – 20 = -87 dBm Signal is too weak... But you can roam to the other AP @ -67 dBm!

¹Future availability ² Available for High-powered only

³ Available for wall-plate and teleworker only

⁴ Available for teleworker only

Cisco Aironet Portfolio – Outdoor AP

Enterprise Class

1530

- 802.11n
- 2 models, low profile
- 2G: 3x3:3; 5G: 2x3:2
- Internal or External antenna
- Flexible Antenna Ports
- Centralized, FlexConnect, & Mesh

1560

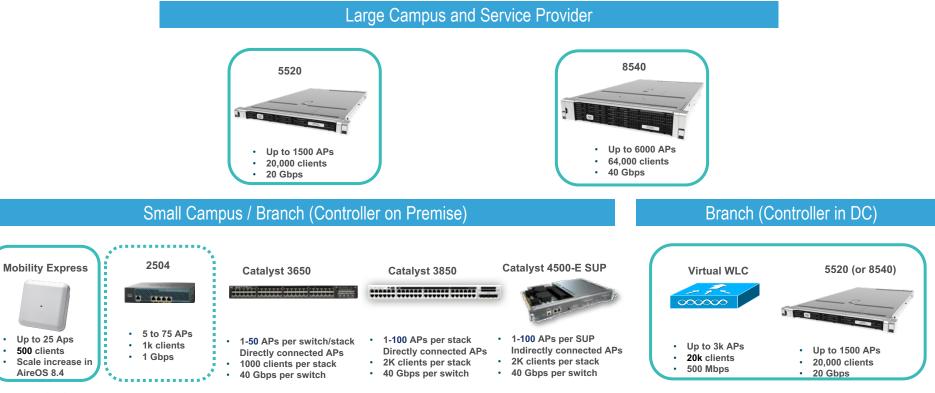
- 802.11ac W2
- 4 models (I/E/D/PS)
- 3x3:3, 80MHz, 1.3G (I)
- 2x2:2, 80MHz, 867M (D/E/PS)
- MU-MIMO
- SFP
- Internal Directional Ant. (D)
- 4.9 GHz (PS: Public Safety)
- Flexible Antenna Ports
- CleanAir 80 MHz
- ClientLink 4.0
- Centralized, FlexConnect, Mesh & Mobility Express

Best in Class

1572EAC

- 802.11ac W1
- 4x4:3 80 MHz; 1.3 G
- External antenna
- SFP
- GPS
- PoE-Out (803.2at)
- Flexible Antenna Ports
- CleanAir 80 MHz
- ClientLink 3.0
- Modularity
- Centralized, FlexConnect & Mesh

Cable Operators

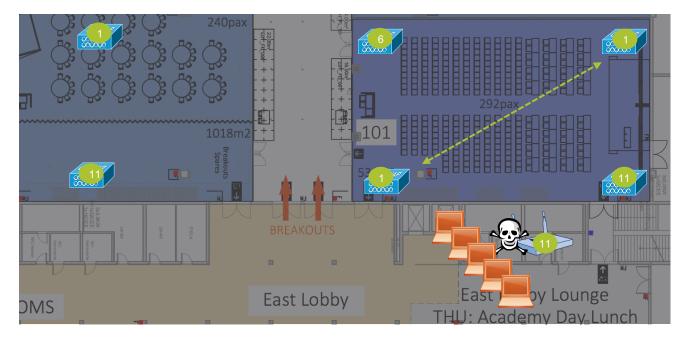

1572IC/EC

- 802.11ac W1
- 4x4:3 80 MHz; 1.3 G
- Internal or External antenna
- DOCSIS 3.0, 24x8
- SFP
- GPS
- PoE-Out (803.2at) (EC)
- Flexible Antenna Ports
- CleanAir 80 MHz
- ClientLink 3.0
- Modularity
- Centralized, FlexConnect & Mesh

Functions of the WLAN Controller

- Centralized configuration and policy enforcement of the Wireless LAN
- Controller acts as security gateway for clients
 - Authentication profiles, ACL enforcement, Bandwidth controls, RADIUS, DHCP, DNS, VLANs, ARP broadcasts, etc...
 - All access to network resources goes through the controller (APs in Local Mode)
- Manages all access points on the network
 - Nonoverlapping channel and power assignments, automatic channel width in 5GHz, coverage hole detection, RF analysis
 - Firmware upgrade, statistics gathering, WIPS, rogue AP detection & containment
- Highly Available and simple plug and play deployment model
 - Facilitate seamless Layer2 and Layer3 roaming
- No need to re-subnet the network for deployment, AP's can be dropped into any local or remote network segment Cisco Public 96

Cisco Wireless Controller Portfolio



ad tad ta CISCO

•

•

RF High Availability: Cisco RRM RRM DCA in action

- RRM will determine the optimal channel plan based on AP layout (NDP)
- A rogue AP is detected on channel 11
- RRM will assess the RF and take a decision in less than couple 10s of seconds (ED-RRM with rogue contribution)
- Channel change is triggered to improve the RF
- Note how the 3 non overlapping channels are still maintained!
- RRM has a RF system view. AP view would be limited and could result in sub-optimal RF

017 Cisco and/or its affiliat **plan**ghts reserved. Cisco Public 98

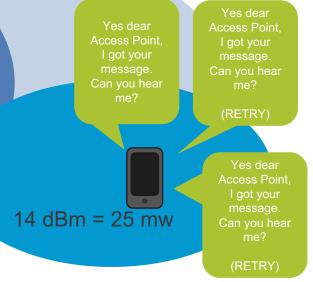
cisco

Don't Use Maximum Power!!! Why?

🔂 - Jussi Kiviniemi heeft geretweet

Jason Hintersteiner
@EmperorWiFi

Setting Tx power is like drinking scotch: The right amount is great, but "more" does not mean "better", & too much will make you sick...


Clients are not Maximum Power

I TALK TO MY CLIENTS VERY LOUD.... SO I'M PRETTY SURE THEY CAN HEAR ME!!!

ululu cisco

20 dBm = 100 mw

Can Power Really Damage Cell Conditions?

Bad design example: HTC One @14 dBm, AP @20 dBm

								_	
	17 0.039879000	172.31.255.101	172.31.255.103	UDP	1420	34	–35 55 dB	54.0 Source port: 50857 Destination port: search-agent	
	18 0.040266000	172.31.255.101	172.31.255.103	UDP	1420	34	-35 55 dB	54.0 Source port: 50857 Destination port: search-agent	
	19 0.040648000	172.31.255.101	172.31.255.103	UDP	1420	34	–34 56 dB	54.0 Source port: 50857 Destination port: search-agent	
	20 0.041938000	172.31.255.101	172.31.255.103	UDP	1420	34	–34 56 dB	54.0 Source port: 50857 Destination port: search-agent	
	21 0.042217000	172.31.255.101	172.31.255.103	UDP	1420	34	–29 61 dB	36.0 Source port: 50857 Destination port: search-agent	
	22 0.043444000	172.31.255.101	172.31.255.103	UDP	1420	34	–29 61 dB	12.0 Source port: 50857 Destination port: search-agent	
	23 0.043445000		Cisco_Oa:O4:2e (RA)	802.11	40		–4545 dB	12.0 Acknowledgement, Flags=C	
	24 0.043850000	172.31.255.101	172.31.255.103	UDP	1420	34	–34 56 dB	54.0 Source port: 50857 Destination port: search-agent	
	25 0.044245000	172.31.255.101	172.31.255.103	UDP	1420	34	–34 56 dB	54.0 Source port: 50857 Destination port: search-agent	
	26 0.044641000	172.31.255.101	172.31.255.103	UDP	1420	34	–34 56 dB	54.0 Source port: 50857 Destination port: search-agent	
	27 0.045023000	172.31.255.101	172.31.255.103	UDP	1420	34	-35 55 dB	54.0 Source port: 50857 Destination port: search-agent	
	28 0.045750000	172.31.255.101	172.31.255.103	UDP	1420	34	–29 61 dB	36.0 Source port: 50857 Destination port: search-agent	
	29 0.046223000	172.31.255.101	172.31.255.103	UDP	1420	34	–29 61 dB	36.0 Source port: 50857 Destination port: search-agent	
	30 0.047450000	172.31.255.101	172.31.255.103	UDP	1420	34	–29 61 dB	12.0 Source port: 50857 Destination port: search-agent	
	31 0.047450000		Cisco_Oa:O4:2e (RA)	802.11	40		–47 43 dB	12.0 Acknowledgement, Flags=C	
	22.0.047962000	170 01 055 101	177 21 255 102	UDD	1420	24	24 56 do	54 0 Source port: 50957 Destination port: search agent	
			s), 1420 bytes captured	(11360 b	its) on	interface 0			
F	adiotap Header v0	, Length 26							
I		ta, Flags:R.F.C							
	Type/Subtype: Qo								
E	Frame Control: 0	x0A88 (Normal)	Deced on Dy				nko EA N	Albena rata in alcav	
	Version: O		Based on RX /	AP Sig	jnai,		NKS 54 I	Vbps rate is okay	
	Type: Data fra	me (2)	Put client mee		in the		nd A D d	oes not ACK until rate falls to 12 Mbps	
	Subtype: 8		Dut chent mes	saye	15 100	J weak, a		bes not ACK until rate fails to 12 mpps	
	🗏 Flags: OXA								
			DS to a STA via AP(TO D)5: 0 Fro	m DS: 1) (0x02)			
	0 =	More Fragments: This :	is the last fragment						
	1 = Retry: Frame is being retransmitted								
		PWR MGT: STA will stay			Each n	nessad	e takes 8 times more to be		
		More Data: No data bu							
		Protected flag: Data '			tranem	ittad (in	ncluding EIFS and retries)		
	0 = •	Order flag: Not stric	tly ordered			uansii	inted (II	realized r	
	cisco							© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 101	

Some Client Max EIRPs

Model	EIRP 2.4 GHz	Worst* EIRP 5 GHz
Iphone 6S	14.8 dBm	10.3 dBm
Ipad 4	15.2 dBm	22.67 dBm
Samsung S7	14.8 dBm	10.14 dBm
Samsung S4 tab	12.05 dBm	11.24 dBm
Samsung S6	13.5 dBm	10.66 dBm
HTC One	14.4 dBm	13.8 dBm
Nokia Lumia 1520	13.1 dBm	11.6 dBm
ASUS PCE-AC66	22 dBm	22.83 dBm

* EIRP varies with sub-band, displaying worst of all sub-bands

In short: half your worst client max power

e.g. if you design for 5 GHz and worst client max is rate11 dBmpset your AP power to 8 dBm

Make it Easy

Make it Work

SECURITY

RF

-

ິ

WIRELES

Make it <u>Perform</u>

INFRASTRUCTURE

MESH

Enable High Availability (AP and Client SSO) Enable AP Failover Priority Enable AP Multicast Mode Enable Multicast VLAN Enable Pre-image download Enable AVC Enable NetFlow Enable Local Profiling (DHCP and HTTP) Enable Local Profiling (DHCP and HTTP) Enable NTP Modify the AP Re-transmit Parameters Enable FastSSID change Enable Per-user BW contracts Enable Per-user BW contracts Enable Multicast Mobility Enable Client Load balancing Disable Aironet IE FlexConnect Groups and Smart AP Upgrade

Set Bridge Group Name Set Preferred Parent Aultiple Root APs in each BGN Set Backhaul rate to "Auto" Set Backhaul Channel Width to 40/80 MHz Backhaul Link SNR > 25 dBm Avoid DFS channels for Backhaul External RADIUS server for Mesh MAC Authentication Enable IDS Enable EAP Mesh Security Mode Enable 802.1x and WPA/WPA2 on WLAN Enable 802.1x authentication for AP Change advance EAP timers Enable SSH and disable telnet Disable Management Over Wireless Disable WiFi Direct Secure Web Access (HTTPS) Enable User Policies Enable Client exclusion policies Enable rogue policies and Rogue Detection RSSI Strong password Policies Enable IDS BYOD Timers

Disable 802.11b data rates Restrict number of WLAN below 4 Enable channel bonding – 40 or 80 MHz Enable BandSelect Use RF Profiles and AP Groups Enable RRM (DCA & TPC) to be auto Enable Auto-RF group leader selection Enable Cisco CleanAir and EDRRM Enable Noise &Rogue Monitoring on all channels Enable DFS channels Avoid Cisco AP Load

http://www.cisco.com/c/en/us/td/docs/wireless/technology/wlc/82463-wlc-config-best-practice.html

Thank You

Additional resources from CiscoLive 2017

BRKCRS-2031 - Enterprise Campus Design: Multilayer Architectures and Design Principles

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=93710&backBtn=true

BRKARC-3438 - Cisco Catalyst 3850 and 3650 Series Switching Architecture

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=93707&backBtn=true

BRKARC-3465 - Cisco Catalyst 6800 Switch Architectures

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=94000&backBtn=true

BRKCRS-2900 - Driving Enterprise Network Innovation - From the Gates to the GUI

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=94402&backBtn=true

Additional resources from CiscoLive 2017

BRKEWN-2010 - Design and Deployment of Enterprise WLANs

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=93721&backBtn=true

BRKEWN-2670 - Designing Next-Gen Wireless Open Office

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=94063&tclass=popup

BRKEWN-3011 - Advanced Troubleshooting of Wireless LANs

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=94130&tclass=popup

BRKEWN-2017 - Understanding RF Fundamentals and the Radio Design for 11ac Wireless Networks

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=94061&tclass=popup

BRKEWN-2027 - Design and Deployment of Outdoor Wireless Networks

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=94064&backBtn=true

Additional resources from CiscoLive 2017

BRKEWN-3010 - Improve enterprise WLAN spectrum quality with Cisco's advanced RF capacities (RRM, CleanAir, ClientLink, etc)

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=94062&tclass=popup

BRKEWN-2000 - Design and Deployment of Wireless LANs for real time Applications

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=93867&tclass=popup

BRKEWN-3000 - Analyzing and fixing WiFi issues - Cisco WLC tools and packet capture analysis techniques

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=93868&tclass=popup

BRKEWN-2012 - Designing a precise location based service on WiFi to support Connected Mobile Experiences (CMX)

https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_D=93829&backBtn=true

Cisco TrustSec

Would you like to know more?

Suggested Reading:

BRKCRS-2891 - Enterprise Network Segmentation with Cisco TrustSec

BRKSEC-2203 - Enabling TrustSec Software-Defined Segmentation

BRKSEC-2695 - Building an Enterprise Access Control Architecture using ISE and TrustSec

Other References:

Cisco TrustSec Marketing Site Cisco TrustSec Config Guide Cisco TrustSec Matrix Cisco TrustSec Design Guides Fundamentals of TrustSec

http://www.cisco.com/go/trustsec/

cisco.com/c/en/us/td/docs/switches/lan/trustsec/configuration/guide/trustsec.html

http://www.cisco.com/c/en/us/solutions/enterprise-networks/trustsec/solution-overview-listing.html http://www.cisco.com/c/en/us/solutions/enterprise-networks/trustsec/design-guide-listing.html https://www.youtube.com/watch?v=78-GV7Pz18I

Locator / ID Separation Protocol (LISP)

Would you like to know more?

Suggested Reading:

BRKRST-3045 - LISP - A Next Generation Networking Architecture

BRKRST-3047 - Troubleshooting LISP

BRKCRS-3800 - DNA Campus Fabric - A Look Under the Hood

BRKCRS-2802 - DNA Campus Fabric - Monitoring and Troubleshooting

Other References:

Cisco LISP Site Cisco LISP Marketing Site LISP Beta Network Site IETF LISP Working Group Fundamentals of LISP http://lisp.cisco.com http://www.cisco.com/go/lisp/ http://www.lisp4.net or http://www.lisp6.net http://tools.ietf.org/wg/lisp/ https://www.youtube.com/watch?v=IKrV1qB8uqA ·IIIII CISCO