

There is REST and
then there is “REST”

Radovan Semančík
November 2017

Who Am I?

Ing. Radovan Semančík, PhD.

Software Architect at Evolveum

Architect of Evolveum midPoint

Apache Foundation committer

Contributor to ConnId and Apache Directory API

What is REST?

Server

JavaScript in browser
Mobile application
Enterprise application
CLI tool
Desktop client
…

Client HTTP

JSON
request

Web application
Enterprise application
“Cloud” application
Whatever as a Service
“Serverless” server
...

JSON
response

What is REST?

Server

JavaScript in browser
Mobile application
Enterprise application
CLI tool
Desktop client
…

Client HTTP

JSON
request

JSON
response

Web application
Enterprise application
“Cloud” application
Whatever as a Service
“Serverless” server
...

This is simple, easy to understand … and wrong

Who Are You?

I know
everything
about
REST
already

Whatever.
I do not need
to know REST

This may be interesting

Back to 1990s ...

● 1990: WWW invented

• Tim Berners-Lee

● 1996: HTTP 1.0

● 1997: HTTP 1.1

● 2000: Representational State Transfer

• Roy Fielding

● 2002: WWW Architecture

REpresentational State Transfer

REST (according to Fielding)

● Architectural style

• Not “architecture”, not “protocol”, not “API”

● Retro-architecture (HTTP 1.1)

● Transfer of resource representations
• HTML page is a representation, HTTP is transfer protocol

● Architectural constraints

• Client-server, Stateless, Cache, Uniform interface, Layered

system, Code on demand

Representational State Transfer

Source: Fielding R.: Architectural Styles and the Design of Network-based Software Architectures, 2000

So, what exactly is wrong?

ServerClient HTTP

JSON
request

JSON
response

JSON? Not really ...

ServerClient HTTP

request

response

Request-response … kind of ...

ServerClient HTTP

URL
resource

representation
Operations (verbs):
● GET
● PUT
● DELETE
● POST
● ...

REST is not RPC

● Objects (resources) addressed by URL

● Fixed operation set (verbs)
• GET, HEAD, PUT, DELETE, POST, OPTIONS, TRACE, CONNECT

● Stateless
• Sessions are evil

● Hypertext
• Thou shalt not construct your URLs

Theory and Practice

● Theory: REST is architectural style for

hypertext applications

● Practice: we really need RCP

● REST is not good for RPC

… but REST is popular, we want it …

● Result: RESTful APIs

RESTful APIs

● Not really REST
• Not hypertext

• Mostly resource-based, but still some RPC

● Not really API
• Application Programming Interface

• Problematic interface definition (Swagger/OpenAPI?)

• Security? Reliability? Transactions?

● Read: “HTTP-based service”

Reinvented Wheel … again

● 1976: RFC 707

● 1981: Xerox Courier

● 1991: CORBA

● 1993: DCE/RPC → DCOM

● 1995: SunRPC

● 1998: SOAP

● 200x: “RESTful” API

Pure REST

● It is possible to implement pure REST service

… but it is going to be real pain (very likely)
• Careful design and implementation

• Unnecessary complexity

• Too many network round-trips

• Expect poor performance

● Hypertext is not suitable for everything

What do we do?

● Keep the parts that fit
• Resources, URLs, representations

• GET, DELETE, POST, …

● Ditch the parts that do not fit
• Hypertext

● Compromises
• Statelessness, caching, security, consistency, ...

● Interface definition
• Swagger/OpenAPI

Practical “REST”

● Try to stick to resources and representations
• URL represents object (resource)

● GET as safe operation

● Use POST for RPC when needed
• But do not abuse

● Define the interface
• URL formats and meaning, data types, inputs/outputs, ...

Practical case study: midPoint

● MidPoint: comprehensive identity

management and governance system
• Identity management, provisioning, role-based access control,

audit, workflow, entitlement management, password management,

policy management, segregation of duties, …

● 100% open source

● Started in 2011

● 700k lines of (mostly) Java code

(things are a bit
complex in this part)

MidPoint Services

midPoint

Self-service
application

IDE

User

Developer

Custom
client

Enterprise
integration

Mobile
application

MidPoint “REST” service

● Development started in 2013

● Existing data model and operations
• Object-based: User, Role, Organizational unit, Account, Task,

Security policy, ...

• CRUD … but there are exceptions

● “RESTful” part and RPC part

● Kept as close to REST ideas as was practical

RESTful Operations: object

http://…./rest/users/02c15378­c48b­11e7­b010­1ff8606bae23

prefix type object identifier (OID)

Verbs:

● GET: read

● POST: modify

● DELETE: delete

● PUT: create (not recommended)

How does object look like?

<user oid="02c15378­c48b­11e7­b010­1ff8606bae23">
 <name>jack</name>
 <description>Where's the rum?</description>
 <fullName>Jack Sparrow</fullName>
 <givenName>Jack</givenName>
 <familyName>Sparrow</familyName>
 <emailAddress>jack.sparrow@evolveum.com</emailAddress>
 <locality>Caribbean</locality>
 <activation>
 <administrativeStatus>enabled</administrativeStatus>
 </activation>
</user>

{
 "name" : "jack",
 "fullName" : "Jack Sparrow",
 "givenName" : "Jack",
 "familyName" : "Sparrow",
 …

XML

JSON

RESTful Operations: collection

http://…./rest/users

prefix type

Verbs:

● GET: list objects, search (theoretically)

● POST: create new object

● DELETE: not supported

● PUT: not supported

Search

● Query language
<q:equal>

 <q:path>name</q:path>

 <q:value>jack</q:value>

</q:equal>

● Search with POST: convenience

● Deviation from REST
• Dedicated “search” resource for POST instead of GET

• Should return list of URLs, but returns objects (to save round trips)

http://…./rest/users/search

HTTP verbs

● GET is safe

● POST used for many things

● DELETE deletes

● PUT is not very useful

● PATCH for modification
• But POST works as well

● Typical “REST” API

Error Codes

● 1xx: Information. Stay tuned.

● 2xx: Success. All done.

● 3xx: Redirection or “in progress” (we will get to that)

● 4xx: Client error (e.g. bad request)

● 5xx: Server error (e.g. bug in server code)

Trivial, isn’t it? Now let’s have a
look at the interesting stuff.

Asynchronous Operations

● Operations that take a looooong time (days)

● Cannot return success (2xx)

● Solution: redirects (3xx)

Asynchronous Operations

midPointclient
Modify user

POST …/users/12345

Redirect

302: …/tasks/87654

Start operation:
 create new task

Task
87654

Check task
GET …/tasks/87654

200: <task>...</task>

RPC Operations: object-related

http://…/rest/tasks/c68d7770­c493­11e7­bce6­9bec1fc3b57c/suspend

prefix type object identifier (OID)

Verbs:

● GET: not applicable

● POST: execute the operation

● DELETE: not applicable

● PUT: not applicable

op

Object-related RPC operations

● Deviation from pure REST
• Should be modeled as resource changes or separate resources

… but that is a pain

● Error handling

RPC Operations: global

http://…/rest/notifyChange

prefix

Verbs:

● GET: not applicable

● POST: execute the operation

● DELETE: not applicable

● PUT: not applicable

operation

Global RPC operations

● Complex input and output data structures

● Huge deviation from pure REST

● It was necessary to keep the interface simple

and efficient

Next: really hard problems ...

Security

● REST is stateless
• Cookie-based sessions are out

● HTTP Basic authentication
• Oh, really?

● OAuth2 / OpenID Connect
• “best” practice for REST APIs

● JSON Web Tokens (JWT)
• SAML tokens reinvented

Interface Definition

● Swagger / OpenAPI
• WSDL reinvented (CORBA IDL reinvented)

• JSON-oriented

• Still quite limited, but at least something

● REST purists hate it
• Because this goes directly against hypertext principles

Stub and Skeleton

Client
app

t1.suspend()

Interface definition

stub

Server

suspend() {
 …
}

skeleton
HTTP
POST

generate
code

generate
code

Does not really works in “RESTful” APIs (yet)

Transactions and Consistency

● Transactions (ACID)
• Forget it

● Consistency
• Cannot forget it, but it is tricky

• Optimistic locking / MVCC is best bet

• ETag (RFC7232) is a standard mechanism

• But a lot of proprietary mechanisms is used instead

Conclusion

● REST is no good for RPC

… but we are going to use it anyway

● And it is practical

… with some tweaks and compromises

● Future?

Questions and Answers

Radovan Semančík

www.evolveum.com

Thank You

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Questions
	Thank You

