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This is simple, easy to understand … and wrong



 

Who Are You?

I know
everything
about
REST
already

Whatever.
I do not need
to know REST 

This may be interesting



 

Back to 1990s ...

● 1990: WWW invented

• Tim Berners-Lee

● 1996: HTTP 1.0

● 1997: HTTP 1.1

● 2000: Representational State Transfer

• Roy Fielding

● 2002: WWW Architecture



 

REpresentational State Transfer



 

REST (according to Fielding)

● Architectural style

• Not “architecture”, not “protocol”, not “API”

● Retro-architecture (HTTP 1.1)

● Transfer of resource representations
• HTML page is a representation, HTTP is transfer protocol

● Architectural constraints

• Client-server, Stateless, Cache, Uniform interface, Layered 

system, Code on demand



 

Representational State Transfer

Source: Fielding R.: Architectural Styles and the Design of Network-based Software Architectures, 2000



 

So, what exactly is wrong?
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JSON? Not really ...

ServerClient HTTP

request

response



 

Request-response … kind of ...

ServerClient HTTP

URL
resource

representation
Operations (verbs):
● GET
● PUT
● DELETE
● POST
● ...



 

REST is not RPC

● Objects (resources) addressed by URL

● Fixed operation set (verbs)
• GET, HEAD, PUT, DELETE, POST, OPTIONS, TRACE, CONNECT

● Stateless
• Sessions are evil

● Hypertext
• Thou shalt not construct your URLs



 

Theory and Practice

● Theory: REST is architectural style for 

hypertext applications

● Practice: we really need RCP

● REST is not good for RPC

… but REST is popular, we want it …

● Result: RESTful APIs



 

RESTful APIs

● Not really REST
• Not hypertext

• Mostly resource-based, but still some RPC

● Not really API
• Application Programming Interface

• Problematic interface definition (Swagger/OpenAPI?)

• Security? Reliability? Transactions?

● Read: “HTTP-based service”



 

Reinvented Wheel … again

● 1976: RFC 707

● 1981: Xerox Courier

● 1991: CORBA

● 1993: DCE/RPC → DCOM

● 1995: SunRPC

● 1998: SOAP

● 200x: “RESTful” API



 

Pure REST

● It is possible to implement pure REST service

… but it is going to be real pain (very likely)
• Careful design and implementation

• Unnecessary complexity

• Too many network round-trips

• Expect poor performance

● Hypertext is not suitable for everything



 

What do we do?

● Keep the parts that fit
• Resources, URLs, representations

• GET, DELETE, POST, …

● Ditch the parts that do not fit
• Hypertext

● Compromises
• Statelessness, caching, security, consistency, ...

● Interface definition
• Swagger/OpenAPI



 

Practical “REST”

● Try to stick to resources and representations
• URL represents object (resource)

● GET as safe operation

● Use POST for RPC when needed
• But do not abuse

● Define the interface
• URL formats and meaning, data types, inputs/outputs, ...



 

Practical case study: midPoint

● MidPoint: comprehensive identity 

management and governance system
• Identity management, provisioning, role-based access control, 

audit, workflow, entitlement management, password management, 

policy management, segregation of duties, …

● 100% open source

● Started in 2011

● 700k lines of (mostly) Java code



 

(things are a bit
complex in this part)

MidPoint Services

midPoint

Self-service
application
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MidPoint “REST” service

● Development started in 2013

● Existing data model and operations
• Object-based: User, Role, Organizational unit, Account, Task, 

Security policy, ...

• CRUD … but there are exceptions

● “RESTful” part and RPC part

● Kept as close to REST ideas as was practical



 

RESTful Operations: object

http://…./rest/users/02c15378­c48b­11e7­b010­1ff8606bae23

prefix type object identifier (OID)

Verbs:

● GET: read

● POST: modify

● DELETE: delete

● PUT: create (not recommended)



 

How does object look like?

<user oid="02c15378­c48b­11e7­b010­1ff8606bae23">
    <name>jack</name>
    <description>Where's the rum?</description>
    <fullName>Jack Sparrow</fullName>
    <givenName>Jack</givenName>
    <familyName>Sparrow</familyName>
    <emailAddress>jack.sparrow@evolveum.com</emailAddress>
    <locality>Caribbean</locality>
    <activation>
     <administrativeStatus>enabled</administrativeStatus>
    </activation>
</user>

{
    "name" : "jack",
    "fullName" : "Jack Sparrow",
    "givenName" : "Jack", 
    "familyName" : "Sparrow",
    …

XML

JSON



 

RESTful Operations: collection

http://…./rest/users

prefix type

Verbs:

● GET: list objects, search (theoretically)

● POST: create new object

● DELETE: not supported

● PUT: not supported



 

Search

● Query language
<q:equal>

    <q:path>name</q:path>

    <q:value>jack</q:value>

</q:equal>

● Search with POST: convenience

● Deviation from REST
• Dedicated “search” resource for POST instead of GET

• Should return list of URLs, but returns objects (to save round trips)

http://…./rest/users/search



 

HTTP verbs

● GET is safe

● POST used for many things

● DELETE deletes

● PUT is not very useful

● PATCH for modification
• But POST works as well

● Typical “REST” API



 

Error Codes

● 1xx: Information. Stay tuned.

● 2xx: Success. All done.

● 3xx: Redirection or “in progress” (we will get to that)

● 4xx: Client error (e.g. bad request)

● 5xx: Server error (e.g. bug in server code)



 

Trivial, isn’t it? Now let’s have a 
look at the interesting stuff.



 

Asynchronous Operations

● Operations that take a looooong time (days)

● Cannot return success (2xx)

● Solution: redirects (3xx)



 

Asynchronous Operations

midPointclient
Modify user

POST …/users/12345

Redirect

302: …/tasks/87654

Start operation:
   create new task

Task
87654

Check task
GET …/tasks/87654

200: <task>...</task>



 

RPC Operations: object-related

http://…/rest/tasks/c68d7770­c493­11e7­bce6­9bec1fc3b57c/suspend

prefix type object identifier (OID)

Verbs:

● GET: not applicable

● POST: execute the operation

● DELETE: not applicable

● PUT: not applicable

op



 

Object-related RPC operations

● Deviation from pure REST
• Should be modeled as resource changes or separate resources

… but that is a pain

● Error handling



 

RPC Operations: global

http://…/rest/notifyChange

prefix

Verbs:

● GET: not applicable

● POST: execute the operation

● DELETE: not applicable

● PUT: not applicable

operation



 

Global RPC operations

● Complex input and output data structures

● Huge deviation from pure REST

● It was necessary to keep the interface simple 

and efficient



 

Next: really hard problems ...



 

Security

● REST is stateless
• Cookie-based sessions are out

● HTTP Basic authentication
• Oh, really?

● OAuth2 / OpenID Connect
• “best” practice for REST APIs

● JSON Web Tokens (JWT)
• SAML tokens reinvented



 

Interface Definition

● Swagger / OpenAPI
• WSDL reinvented (CORBA IDL reinvented)

• JSON-oriented

• Still quite limited, but at least something

● REST purists hate it
• Because this goes directly against hypertext principles



 

Stub and Skeleton

Client
app

t1.suspend()

Interface definition

stub

Server

suspend() {
  …
}

skeleton
HTTP
POST

generate
code

generate
code

Does not really works in “RESTful” APIs (yet)



 

Transactions and Consistency

● Transactions (ACID)
• Forget it

● Consistency
• Cannot forget it, but it is tricky

• Optimistic locking / MVCC is best bet

• ETag  (RFC7232) is a standard mechanism

• But a lot of proprietary mechanisms is used instead



 

Conclusion

● REST is no good for RPC

… but we are going to use it anyway

● And it is practical 

… with some tweaks and compromises

● Future?



 

Questions and Answers



 

Radovan Semančík

www.evolveum.com

Thank You
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