

Software Architecture
Theory and Practice

Radovan Semančík
April 2018

Who Am I?

Ing. Radovan Semančík, PhD.

Software Architect at Evolveum

Architect of Evolveum midPoint

Apache Foundation committer

Contributor to ConnId and Apache Directory API

Poll

Who wants to be:
1. Coder/developer

2. Software designer/architect

3. Manager

So, you wanna be
an architect?

What Does Software Architect Do?
Theory

● Draw diagrams (UML anyone?)

● Design great and important systems

● Be a big boss

What Does Software Architect Do?
Practice

● Draw diagrams (UML anyone?)

… implement it too. And test. And document.

● Design great and important systems

… more like databases and JavaScript.

● Be a big boss

… in fact do many things by yourself.

architecture
The art or science of building; especially, the art of
building houses, churches, bridges, and other
structures, for the purposes of civil life; -- often called
civil architecture.
Construction, in a more general sense; frame or
structure; workmanship.

Webster, 1913

How it all works in
practice ...

What Client Wanted

What Client Described

How Architect Understood

Empty Set of Constraints

Adding Constraints

Adding Constraints

Architecture Finished

Architecture Documented

Start of Development

Development

Architectural Issue Discovered

Development

Development Finished

Delivery

Morphing the System

Desired Described Designed Deployed

We could do better
than that

… in theory

Waterfall Model

Analysis

Design

Implementation

Operation

Validation

Very popular software
development model

Waterfall Model

Analysis

Design

Implementation

Operation

Validation

DOES NOT WORK

Waterfall Model

Analysis

Design

Implementation

Operation

Validation

DOES NOT WORK

DO NOT USE

Hic sunt liones

Beware of the Leopard

High voltage!

Danger!!!

Iterative Development

● Feedback
• Use knowledge gained in previous iteration

Analysis

Design

Implementation

Operation

Deployment

Termination

Iteration

Validation

Development Methods Summary

Predictive Adaptive

Cost
Uncertainty of Result

Suitability of Result
Limitations

Waterfall
Iterative

Iterative

Agile

We could do better
… even in practice

Iterations and Increments

Software Developement
… in practice

● Do not try to design/implement everything
• Waterfall does not work!

● Iterations and increments
• But you need to have some idea about the desired result

● Beware the limitations
• One size does not fit all

• Agile does not always work

• Golden hammer (anti-pattern)

Vision

Architecture and
design

… in theory

Model

Simplified

= imprecise

Overview

= better “handling”

UML

Architecture and
design

… in practice

Models

● Models in pure form (e.g. pure UML)
• Limited usefulness

• Fighting with tools instead of making progress

● Hybrid (customized) models
• Very useful, especially in early phases

• Difficult to maintain

● Free-form diagrams
• Whiteboard – absolutely necessary

• Brainstorming, early “validation”

Informal Architecture Diagram
(Technical marketing)

HR

Workflow

Domain

Database
Applications

ERP
Legacy
System

Agent

Identity Management
System

LDAP

SOAP
SQL

Formal Architecture Diagram
(I have UML and I’m not afraid to use it)

Informal Component Diagram
(Whiteboard 2.0)

User Interface
User Interface

Business Logic

IDM Model

Repository
Provisioning

Administrators
Users

Resources

Marketing-Oriented Diagram
(Boxes and more boxes)

Infrastructure

Repository
Provisioning

Connectors

IDM Model

User Interface
Custom Business Logic

Custom User Interface

If you ever see this: run away!

System Decomposition

Modular and Component Structure

Component Interactions

Component Interactions

Component Interactions

Data Structures

Complex Data Structures

● Hard to maintain
● Data schema
● Generate?

Architecture Model Summary
● Operates with concepts

• May or may not map to final components, interfaces, ...

● Difficult to align with implementation
• ... and not efficient to reach 100% alignment

• The model should be guideline, not dogma

● Model ≠ Architecture
• Architecture is much more:

• Textual descriptions, explanations, description of concepts

• Motivations, design decisions, trade-offs, future expectations

• Beware of tools that promise to simplify that

WARNING

Architectural Principles

● Separation of concerns

● Dependency inversion principle

● Acyclic dependencies principle

● Stable abstractions principle

● Stable dependencies principle

● Open-closed principle

● Single responsibility principle

● Interface segregation principle

● …

Those are (very) useful

When architecture
goes wrong …

Fallacies, Antipatterns, Rot & Smell

● Fallacies of distributed computing
• Network is reliable, Latency is zero, Bandwidth is infinite, ...

● Architectural antipatterns
• Big ball of mud, Design by committee, Not invented here, ...

● Symptoms of rotting design
• Rigidity, Fragility, Immobility, Viscosity

● Code smell
• Duplicated code, Contrived complexity, Feature envy, ...

Common Problems
● Too little analysis / design

• Especially in agile and open source

● Too much architecture (“stratospheric architecture”)

• Pretty concepts that never get implemented

● No environment analysis

● Unmaintained architecture
• Architect did his work at beginning of the project

… and then left

• Architecture is a mutable thing! Needs constant maintenance.

Iron Triangle

Fast Cheap

Good

Quality

Schedule Cost

Scope

Pick any two ...
 ... the third will follow

At least one corner must be
variable, otherwise quality
will suffer

Moving Target

Fast Cheap

Good

● Requirements are incomplete and changing

● Environment is changing

=> software must change

● Architecture must be able to adapt

● Expect that you will have to make changes

● Do not forget about Iron Triangle

Buzzword-Oriented Architecture

● Very common approach

● Huge problem

● Solution: known what you are doing
• Understand the technology before committing to it

● History repeating
• Basic principles do not change often

History Repeating

● 1976: RFC 707

● 1981: Xerox Courier

● 1991: CORBA

● 1993: DCE/RPC → DCOM

● 1995: SunRPC

● 1998: SOAP

● 200x: “RESTful” API

What we can do?

Form follows purpose

Form Follows Purpose

versus

Pragmatic Approach

● Focus on the effects of the architecture
• Emphasize the aspects that can help achieve results

• Ignore aspects that does not influence result

● Common sense, simplicity

● Continuous change

● Skepticism
• Continual testing, systematic doubt

• True knowledge is uncertain

Questions and Answers

Radovan Semančík

www.evolveum.com

Thank You

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Questions
	Thank You

