
Pavol Jesensky

EMEA AIOPS SME

AWS practice lead

CIC Slovakia

pjesensk@sk.ibm.com @pjesensk

The world goes crazy
with AI agents

mailto:pjesensk@sk.ibm.com

Have you already
created or worked

with AI agent?

Game: Agent, assistant or automation?

3

Dynamic Pricing on a flight booking website that changes the ticket cost every few hours based on real-time demand,
competitor prices, and remaining seats.

Email Spam Filter that automatically moves any email containing a known malicious URL or a specific, pre-defined set of
keywords to the junk folder.

An Internal HR Chatbot that allows an employee to ask, "How many vacation days do I have left?" and instantly pulls the
exact number from the HR database and displays it.

Smart Reply in your email app that suggests three short, one-click response options ("Sounds good!", "I'm busy that day,"
"Can we reschedule?") based on the content of the incoming message.

Autonomous Trading Bot that monitors the stock market 24/7, analyzes complex trend patterns, and executes buy or sell
orders based on its own predictive models to meet a long-term profit goal.

A "Plan My Trip" Feature where you input "Find a 3-day trip to Paris next month" and the system provides a curated
itinerary including flight, hotel, and activity suggestions, all of which require you to click "Book" or "Confirm."

Traditional AI Models Foundational Models (FMs) Large Language Models (LLMs)

Focus/Goal
Specific, narrow task (e.g., image
classification, simple regression).

General-purpose tasks; adaptation via
fine-tuning (e.g., text, vision, code).

Specialized type of FM, focused on human-like
language understanding and generation.

Training Data
Small to moderate, task-specific, labeled
data.

Massive, diverse, unlabeled datasets
(internet scale).

Massive text and code datasets.

Capability
High performance on one specific, trained
task.

Emergent Abilities (capabilities not
explicitly programmed), zero-shot, few-
shot learning.

Contextual understanding, complex reasoning,
creative text generation, conversation.

Architecture
Varied (e.g., Decision Trees, SVM, simple
Neural Networks).

Typically Transformer architecture.
Typically Transformer architecture (specialized
for sequence data).

Cost/Scale Relatively low. Very high (computation, data, time). Very high.

Key Takeaway: LLMs are a specialized type of Foundational Model.
Both FMs and LLMs represent a shift towards large, general-purpose models, while Traditional AI models are

built for single, narrow objectives.

The brain

4

1. Predicting the next word in an unfinished sentence in any language, trained on nearly all digitized books and internet
text.

2. An engine that classifies an MRI scan as malignant or benign based on millions of pre-labeled medical images.

3. A single model that can describe an image, translate the description into German, and generate a line of Python code
based on the German text.

4. A program that identifies customer emails containing negative sentiment with over 98% accuracy, deployed after a
week of training on a few thousand existing, scored emails.

5. A model that, without any new training, can answer questions about the plot of a newly released movie simply because
its massive training data included the movie's script and reviews.

6. A pre-trained visual model that can recognize a dog in a photo, but is then fine-tuned by a company to specifically
detect only their unique dog-food packaging in store shelf photos.

Game: Guess the model type

What is AI agent?

7

AI assistants are
reactive,
performing tasks
at your request

AI agents are proactive,
working autonomously to
achieve a specific goal by
any means at their
disposal

AI models are
brain behind
execution

An AI agent is a system that

- perceives its environment (through sensors),

- takes actions (through actuators) to achieve goals,

and

- exhibits autonomy and adaptability.

It’s more than just a model; it's a
complete system designed to act
purposefully and independently.

An artificial intelligence (AI) agent is a
system that autonomously performs tasks
by designing workflows with available tools.

Autonomous:

They can act

independently to

complete tasks based on

their programming and

goals, rather than

requiring constant human

input.

Perceptive:

They interact with and

"perceive" their

environment to gather

data and inform their

decisions.

Goal-oriented:

They are designed with

specific objectives in

mind, and they determine

the best course of action

to reach them.

Key characteristics of

AI agent

Adaptive and learning:

They can improve their

performance over time

through self-learning and

by reflecting on their

responses.

Action-oriented:

They can execute actions,

use tools, and interact

with other systems to

achieve their goals.

The Agent's Components

An effective AI agent typically combines these elements:

1.LLM/FM (The Controller): Handles planning, reasoning,

and conversational interface.

2.Memory: Stores past interactions and information (short-

term, long-term).

3.Tools (Traditional Models & APIs): External functions the

agent can call (e.g., a simple sentiment classifier, a search

API, a calendar tool).

Is AI Agent Turing complete?

An AI agent, particularly a sophisticated one, can
be considered Turing-complete in practice, or at
least capable of simulating a Turing machine.
•LLMs as Universal Function Approximators: Large Language Models
are essentially universal function approximators. With enough
parameters and training data, they can theoretically learn to perform
any computable function.
•Access to Tools: A key aspect of modern AI agents is their ability to
use external tools (APIs, code interpreters, databases). These tools
provide the "read/write tape" and the "state transitions" that a Turing
machine needs. For example:

• Code Interpreter: An agent that can write and execute arbitrary
code (Python, etc.) effectively has the power of a Turing machine.

• Memory: The agent's memory (short-term context, long-term
vector databases) acts like a tape, storing and retrieving
information.

• Perception & Action: The perception of new input and the
execution of actions are analogous to reading from and writing to
the tape, and changing the machine's state.

AI Agents: Advantages of AI Agents

1. Feedback Mechanisms via Critic Agents and Human-in-

the-Loop

to test and improve responses.

2. Digital Workforce Via Autonomous & Semi-Autonomous

AI Systems

to fully or partially automate business processes with an

appropriate level of agency.

3. Proactive Instead of Reactive, Longer Horizon Tasks in

Addition to Real-Time Interaction

Not just chat, but agents can initiate conversations and

perform longer running tasks like report compilation or

working entire cases.

Agentic AI solution

Planning
Reasoning

Action

Types of AI agents

Simple reflex agents

Designed to operate based on direct responses to
environmental conditions.
Follow predefined rules, known as condition-action
rules, to make decisions without considering past
experiences or future consequences.
Reflex agents apply current perceptions of the
environment through sensors and take action based
on a fixed set of rules.
For example, a thermostat is a simple reflex agent that
turns on the heater if the temperature drops below a
certain threshold and turns it off when the wanted
temperature is reached
Simple reflex agents are effective in structured and
predictable environments where the rules are well-
defined. However, they struggle in dynamic or
complex scenarios that require memory, learning or
long-term planning.
Because they do not store past information, they can
repeatedly make the same mistakes if the predefined
rules are insufficient for handling new situations.

Types of AI agents

Model-based reflex agents

More advanced version of the simple reflex agent.
While it still relies on condition-action rules to make
decisions, it also incorporates an internal model of
the world. This model helps the agent track the
current state of the environment and understand
how past interactions might have impacted it,
allowing it to make more informed decisions.
Model-based reflex agents use their internal model
to reason about the environment's dynamics and
make decisions accordingly.
For instance, a robot navigating a room might not
just react to obstacles in its immediate path but also
consider its previous movements and the locations of
obstacles that it has already passed.
They can handle situations where the context needs
to be remembered and used for future decisions,
making them more adaptable than simpler agents.
However, while model-based agents improve
flexibility, they still lack the advanced reasoning or
learning capabilities required for truly complex
problems in dynamic environments.

Types of AI agents

Goal-based agents

Extends the capabilities of a simple reflex agent by
incorporating a proactive, goal-oriented approach to
problem-solving.
Goal-based agents consider their ultimate objectives and
use planning and reasoning to choose actions that move
them closer to achieving their goals.
These agents operate by setting a specific goal, which
guides their actions. They evaluate different possible
actions and select the one most likely to help them reach
that goal.
For instance, a robot designed to navigate a building might
have a goal of reaching a specific room. Rather than
reacting to immediate obstacles only, it plans a path that
minimizes detours and avoids known obstacles, based on a
logical assessment of available choices.
 It considers future states and their potential impact on
reaching the goal.
They often rely on preprogrammed strategies or decision
trees for evaluating goals.
Goal-based reflex agents are widely used in robotics,
autonomous vehicles and complex simulation systems
where reaching a clear objective is crucial.

Types of AI agents

Utility-based agents

A utility-based reflex agent goes beyond simple goal
achievement by using a utility function to evaluate and
select actions that maximize overall benefit.
Utility-based agents consider a range of possible
outcomes and assign a utility value to each, helping
them determine the most optimal course of action.
Particularly effective in situations where multiple goals
or tradeoffs are involved.
For example an e-commerce company might employ a
utility-based agent to optimize pricing and recommend
products. The agent evaluates various options, such as
sales history, customer preferences and inventory
levels to make informed decisions on how to price
items dynamically.
Utility-based reflex agents are effective in dynamic and
complex environments, where simple binary goal-
based decisions might not be sufficient.
They help balance competing objectives and adapt to
changing conditions, ensuring more intelligent, flexible
behavior.

Types of AI agents

Learning agents

A learning agent improves its performance over time by
adapting to new experiences and data.
Learning agents continuously update their behavior based
on feedback from the environment. This allows them to
enhance their decision-making abilities and perform better
in dynamic and uncertain situations.
Learning agents typically consist of 4 main components:
Performance element: Makes decisions based on a
knowledge base.
Learning element: Adjusts and improves the agent's
knowledge based on feedback and experience.
Critic: Evaluates the agent's actions and provides
feedback, often in the form of rewards or penalties.
Problem generator: Suggests exploratory actions to help
the agent discover new strategies and improve its learning.
For example an agent might explore different strategies,
receiving rewards for correct actions and penalties for
incorrect ones. Over time, it learns which actions maximize
its reward and refine its approach.
Learning agents are highly flexible and capable of handling
complex, ever-changing environments.

Requirements dictate design,
and the Reference Architecture

provides the blueprint.

A Reference Architecture reduces the
complexity, cost, and risk of solution

deployment and sets the foundation for
business transformation.

Agentic AI Architectures

Features a single autonomous entity making

centralized decisions within an environment.

A single AI agent operates independently to

perceive its environment, make decisions and

take actions to achieve a goal.

Key features

Autonomy: The agent operates independently

without requiring interaction with other agents.

Strengths

Simplicity: Easier to design, develop and deploy

compared to multi-agent systems. Requires

fewer resources because it does not need to

manage multiple agents or communication

protocols.

Predictability: Easier to debug and monitor

because the agent operates independently.

Speed: No need for negotiation or consensus-

building among multiple agents.

Cost: Less expensive to maintain and update

compared to complex multi-agent

architectures. Fewer integration challenges

when deployed in enterprise applications.

Weaknesses

Limited scalability: A single agent can become

a bottleneck when handling high-volume or

complex tasks.

Rigidity: Struggles with tasks that require

multistep workflows or coordination across

different domains.

Narrow: Typically designed for a specific

function or domain.

Best use cases

Simple chatbots: Chatbots can operate

independently, don’t require coordination with

other agents and perform well in self-

contained, structured user interactions.

Recommendation systems: Personalized

content recommendations such as the ones

experienced at streaming services are

straightforward enough for a single agent

architecture.

Go beyond the AI capabilities of traditional,

single-agent setups.

Agents adapt their roles based on evolving

tasks, helping to ensure flexibility and

responsiveness in dynamic scenarios.

Multi-agent systems are more flexible.

Key features

Hierarchy: Roles are clearly defined.

Centralized communication: Agents report to

the leader.

Strengths

Task efficiency: Ideal for sequential workflows.

Clear accountability: Leader aligns objective.

Weaknesses

Bottlenecks: Leader reliance can slow progress.

Single point of failure: Vulnerable to leader

issues.

Best use cases

Workflow automation: Multistep approvals.

Document generation: Sections overseen by a

leader.

Horizontal AI architectures

Structure

Peer collaboration model: Agents work as

equals in a decentralized system, collaborating

freely to solve tasks.6

Key features

Distributed collaboration: All agents share

resources and ideas.

Decentralized decisions: Group-driven

decision-making for collaborative autonomy.

Strengths

Dynamic problem solving: Fosters innovation.

Parallel processing: Agents work on tasks

simultaneously.

Weaknesses

Coordination challenges: Mismanagement can

cause inefficiencies.

Slower decisions: Too much deliberation.

Best use cases

Brainstorming: Generating diverse ideas.

Complex problem solving: Tackling

interdisciplinary challenges.

Hybrid AI architectures

Structure

Combines structured leadership with

collaborative flexibility; leadership shifts based

on task requirements.

Key features

Dynamic leadership: Leadership adapts to the

phase of the task.

Collaborative leadership: Leaders engage their

peers openly.

Strengths

Versatility: Combines strengths of both models.

Adaptability: Handles tasks requiring both

structure and creativity.

Weaknesses

Complexity: Balancing leadership roles and

collaboration requires robust mechanisms.

Resource management: More demanding.

Best use cases

Versatile tasks: Strategic planning or team

projects.

Dynamic processes: Balancing structured and

creative demands.

Reactive architectures map situations directly

to actions. They are reflexive, making decisions

based on immediate stimuli from the

environment rather than drawing on memory

or predictive capabilities. They can’t learn from

the past or plan for the future.

A deliberative architecture is an AI system that

makes decisions based on reasoning, planning

and internal models of the world. Unlike

reactive agents, deliberative agents analyze

their environment, predict future outcomes

and make informed choices before acting.

Single-agent
architectures

Multi-agent architectures

Cognitive architectures

An advanced AI system that mimics human-like

thinking, reasoning, learning and decision-

making.

These agents incorporate elements of

perception, memory, reasoning and adaptation,

each represented by individual modules,

enabling them to operate in complex, uncertain

environments while improving over time. This is

the most advanced type of agentic architecture.

This architecture models human-like reasoning

in a BDI agent, with:

Beliefs (B): The agent's knowledge of the world

Desires (D): The agent's goals or objectives

Intentions (I): The course of action that the

agent commits to in order to achieve its desires

Reactive
architectures

Deliberative
architectures

Cognitive
architectures

BDI
architecture

https://www.ibm.com/think/topics/agentic-architecture#f6

Single agent vs Multi agent trade-offs

Single agent Multi agent

Start simple and increase complexity when needed.

Pros:

Cons:

Cons:

1. Lower and more predictable runtime cost.

2. Lower latency for time critical systems.

3. Low implementation complexity.

1. Zero shot accuracy/quality limited by
performance of selected model.

2. Less flexible for implementation of complex
workflows.

1. Increasing and less predictable runtime cost since the number of LLM invocations increase and
is not fully deterministic.

2. Increasing latency especially for parts of workflows that cannot be parallelized due to
sequencing of LLM calls.

3. Increasing implementation complexity where it is often harder to anticipate and evaluate the
impact of changes to the solution.

Pros:

1. Significant empirical evidence that the accuracy/quality of multi agent systems outperforms
single agent zero shot solutions.

2. Scales to automation of sophisticated workflows with state memory and human in the loop to
support complex business processes.

Structure of Multi-agent Systems

• Agents operate at the same hierarchical
level.

• Collaborate or negotiate without a
centralized leader.

• Shared responsibilities and collective
decision-making.

• Consists of leaders and followers.
• Leaders guide and plan; followers

execute instructions.
• Used in scenarios requiring coordinated

efforts.

• Combines equi-level and hierarchical
structures.

• Complex tasks broken into sub-tasks
managed by sub-systems.

• Interplay between hierarchy and peer-to-
peer interaction.

Multiagent patterns
Workflow

Parallelization

Orchestrator

Evaluator - Optimizer

Agents

AI Agent protocols

Function: Connecting Agents to the Outside World

(Tools & Data)

Definition: An open standard (developed by

Anthropic) for an AI system (Client) to access external

data sources and tools (Servers).

Key Concept: Standardizes how an agent can "see"

and "use" enterprise data, code, or APIs securely and

reliably.

Impact: Replaces fragmented API connectors with a

single, universal protocol for tool use, providing real-

time context for better agent decision-making.

Function: Agents Talking to Agents (Interoperability &

Teamwork)

Definition: An open protocol (developed by Google)

enabling autonomous AI agents, built on diverse frameworks

and platforms, to communicate and coordinate tasks.

Key Concept: Allows agents to collaborate on long-running,

complex workflows without needing to expose their internal

memory or code.

Impact: Creates a multi-agent ecosystem where specialized

agents can be composed into powerful "crews" to solve

problems that no single agent could handle (e.g., a

"Researcher Agent" delegating a query to a "Data Analyst

Agent").

24

MCP – Model Context protocol A2A – Agent-to-Agent protocol

Challenges in Agentic AI
Design

Coordination & Collaboration

Challenge: Ensuring agents

communicate effectively,

understand shared goals, and

efficiently divide tasks. Poor

coordination leads to duplication

of work or, worse, task failure.

Risk: Inefficient resource use and

delays.

Conflict Resolution

Challenge: Agents with

competing objectives (or different

interpretations of the same

objective) may actively work

against each other.

Risk: Deadlocks, system

instability, and unintended

adversarial behavior.

25

Emergent Behavior

Challenge: Unexpected, complex

behaviors that arise from the

interaction of many simple agent

rules. The system as a whole

behaves in a way that wasn't

explicitly programmed.

Risk: Unpredictability, making

debugging and verification

extremely difficult.

Ethical Considerations

Challenge: Agents may exhibit

bias, make unfair decisions, or

prioritize efficiency over ethical

compliance when operating in

real-world systems (e.g., hiring,

lending).

Mitigation Need: Clear ethical

guidelines and "value alignment"

in the training and planning

phases.

Safety & Control

Challenge: The autonomous

nature of agents means they can

execute unintended actions at

high speed and scale. This

includes resource consumption,

infinite loops, and irreversible

real-world actions.

Mitigation Need: Robust

Guardrails, Human-in-the-Loop

(HIL), and protocol-based limits

Transparency & Explainability

(XAI)

Challenge: Understanding why an

agent made a particular decision,

especially when that decision

involved complex reasoning or

collaboration with other agents.

Risk: Difficulty in auditing failures

and maintaining trust in the

system.

Lets get our hands dirty

Open Source Frameworks

• Microsoft Frameworks

o Enterprise framework Semantic Kernel

o Research framework Autogen, Magentic-One (based on

Autogen)

• CAMEL

• CrewAI

• LangGraph

• LlamaIndex Agents & Workflows plus llama_deploy (was

llama_agents)

• Mosaic AI Agent Framework and Mosaic AI Agent

Evaluation

• Spring AI Agentic Patterns

• phidata

Commercial Platforms

• Amazon Bedrock Agents

• Celonis AgentC – integrated with Microsoft Copilot

Studio, watsonx Orchestrate, Amazon Bedrock Agents,

CrewAI

• Google Vertex AI Agents

• Microsoft Copilot Studio (was Power Virtual Agents)

• OCI Generative AI Agents

• Salesforce Agentforce 2.0 (was Einstein Copilot)

• SAP AI Agents in Joule

• ServiceNow Agents

• watsonx Orchestrate

Frameworks overview

28

https://gofastmcp.com/getting-started/welcome

FastMCP handles all the complex protocol details so you
can focus on building.
In most cases, decorating a Python function is all you need
— FastMCP handles the rest.

 Fast: High-level interface means less code and faster
development

 Simple: Build MCP servers with minimal boilerplate

 Pythonic: Feels natural to Python developers

 Complete: Everything for production — enterprise
auth (Google, GitHub, Azure, Auth0, WorkOS), deployment
tools, testing frameworks, client libraries, and more

Core components:

 Tools: Tools are the core building blocks that allow your
LLM to interact with external systems, execute code, and
access data that isn’t in its training data. In FastMCP, tools
are Python functions exposed to LLMs through the MCP
protocol.

 Resources: Resources represent data or files that an
MCP client can read, and resource templates extend this
concept by allowing clients to request dynamically
generated resources based on parameters passed in the URI.

🖹 Prompts: Prompts are reusable message templates that
help LLMs generate structured, purposeful responses.

https://gofastmcp.com/getting-started/welcome
https://gofastmcp.com/getting-started/welcome
https://gofastmcp.com/getting-started/welcome

https://github.com/crewAIInc/crewAI

Fast and Flexible Multi-Agent Automation
Framework

https://github.com/crewAIInc/crewAI

30

https://github.com/palkokec/gutread

https://www.gutenberg.org

Project Gutenberg is a library of over 75,000 free

eBooks

Choose among free epub and Kindle eBooks, download

them or read them online. You will find the world's great

literature here, with focus on older works for which U.S.

copyright has expired. Thousands of volunteers digitized

and diligently proofread the eBooks, for you to enjoy.

https://github.com/palkokec/gutread
https://www.gutenberg.org/

33

34

35

36

37

https://strandsagents.com/latest/

Strands Agents is a simple-to-use, code-first framework for
building agents.

Strands Agents is an open source SDK that takes a model-driven
approach to building and running AI agents in just a few lines of
code. Strands scales from simple to complex agent use cases,
and from local development to deployment in production.

Strands simplifies agent development by embracing the
capabilities of state-of-the-art models to plan, chain thoughts,
call tools, and reflect

https://github.com/strands-agents/docs/blob/main/docs/examples/python/weather_forecaster.md

https://strandsagents.com/latest/
https://github.com/strands-agents/sdk-python
https://github.com/strands-agents/docs/blob/main/docs/examples/python/weather_forecaster.md
https://github.com/strands-agents/docs/blob/main/docs/examples/python/weather_forecaster.md
https://github.com/strands-agents/docs/blob/main/docs/examples/python/weather_forecaster.md

How many enterprise
grade agentic applications

have you seen?

38

Agents to production challenge

39

I’m sure you’ve been there: prompt, prompt, prompt, and you have a working application.
It’s fun and feels like magic. But getting it to production requires more. What assumptions
did the model make when building it? You guided the agent throughout, but those
decisions aren’t documented. Requirements are fuzzy and you can’t tell if the application
meets them. You can’t quickly understand how the system is designed and how that
design will affect your environment and performance. Sometimes it’s better to take a step
back, think through decisions, and you’ll end up with a better application that you can
easily maintain. That’s what Kiro helps you do with spec-driven development.

40

An AI IDE that helps you deliver from
concept to production through a
simplified developer experience for
working with AI agents. Kiro is great at
‘vibe coding’ but goes way beyond
that—Kiro’s strength is getting those
prototypes into production systems
with features such as specs and hooks.

https://kiro.dev/

https://kiro.dev/

41

are artifacts that prove useful anytime you need to
think through a feature in-depth, refactor work that
needs upfront planning, or when you want to
understand the behavior of systems—in short, most
things you need to get to production. Requirements
are usually uncertain when you start building, which
is why developers use specs for planning and clarity.
Specs can guide AI agents to a better
implementation in the same way.

act like an experienced developer catching things you
miss or completing boilerplate tasks in the
background as you work. These event-driven
automations trigger an agent to execute a task in the
background when you save, create, delete files, or on
a manual trigger.

Core concepts

Kiro specs Kiro hooks

Kiro process

42

Requirements

Design

Implementation

Kiro best practices

43

 Security First: Always add sensitive files to .gitignore. Never commit environment keys, secrets, or sensitive

configuration files. Kiro's steering files help enforce these practices across your team. Ask Kiro in natural language:

Identify any sensitive/secret/config/env files from #codebase and also add all

these files to project's .gitignore

 Stay Current: Always use the latest package versions and npm. Kiro helps you maintain up-to-date dependencies

automatically.

 Avoid File Proliferation: When working on changes and iterations, avoid the underlying Claude model creating

multiple files with suffixes like fixed, clean, new, etc. Kiro's approach keeps your codebase clean and organized.

 Leverage MCP Servers: Always use MCP servers for AWS services and refer to existing markdown files for context.

Don't create new markdown files - refer to the same context using MCP servers like Context7 and AWS Labs MCP server

for AWS docs.

44

Autopilot Mode: Maximum Velocity

•Complete Code Implementation - Watch as Kiro
transforms ideas into working code in seconds
•Rapid Iteration - Slash development time by eliminating
back-and-forth approvals
•Maximum Efficiency - Focus on the big picture while
Kiro handles implementation details
For my AI Compliance Auditor project, Autopilot mode
was perfect for implementing the foundational
components: data models, Lambda functions, and
infrastructure code.

Supervised Mode: Collaborative
Control

•Request Approval - Before making changes, Kiro presents
its plan and waits for explicit approval
•Show Detailed Steps - See exactly what actions Kiro
intends to take
•Maintain Full Control - Accept or reject proposed changes
with convenient buttons
I used Supervised Mode for critical components like the
policy engine and Bedrock intelligent prompt caching
configurations, where I wanted to review every change.

45

Hi, I would like to build simple agentic app
with crewai and fastmcp to search the web for
tractor parts by parts name.

46

47

48

49

50

51

52

Tips & tricks

53

1.Start with the Spec - Never jump straight into coding. Use Kiro's spec workflow to clarify requirements first. You
can also use the free-form chat mode whenever needed for general assistance and vibe coding.
2.Leverage MCP Servers Extensively - The Context7 and AWS Labs MCP servers provide incredible value. Use them
for every AWS related task.
3.Configure Steering Early - Set up your steering files immediately. They dramatically improve Kiro's contextual
understanding.
4.Use Agent Hooks for Repetitive Tasks - Automate git commits, documentation updates, and code quality checks.
5.Mix Autopilot and Supervised Modes - Use Autopilot for foundational work, Supervised for critical components.
6.Keep Tasks Granular - Break down complex features into small, manageable tasks in your tasks.md.
7.Iterate on Requirements - Don't be afraid to refine your requirements as you learn more about the problem
space.
8.Reuse your hooks, steering, and reusable prompts - Create reusable templates of your .kiro/hooks/,
.kiro/steering/, and .prompts/ directories to accelerate new project setup.
9.Leverage Natural Language Automation - Use natural language prompts to create your own agent hooks and
agent steering rules to automate everything.

Key takeaways

54

•Agentic AI empowers more autonomous and proactive systems.

•Design patterns and architectures are crucial for robust and scalable

solutions.

•Frameworks like CrewAI and AWS Strands, combined with strong

orchestration (FastMCP), accelerate development.

•Tools like Kiro helps building robust enterprise grade agentic applications

55

Icons downloaded from

https://www.flaticon.com/

	Main
	Slide 1: The world goes crazy with AI agents
	Slide 2: Have you already created or worked with AI agent?
	Slide 3: Game: Agent, assistant or automation?
	Slide 4: Key Takeaway: LLMs are a specialized type of Foundational Model. Both FMs and LLMs represent a shift towards large, general-purpose models, while Traditional AI models are built for single, narrow objectives.
	Slide 5: Game: Guess the model type
	Slide 6: What is AI agent?
	Slide 7
	Slide 8: An AI agent is a system that - perceives its environment (through sensors), - takes actions (through actuators) to achieve goals, and - exhibits autonomy and adaptability.
	Slide 9
	Slide 10: An effective AI agent typically combines these elements: LLM/FM (The Controller): Handles planning, reasoning, and conversational interface. Memory: Stores past interactions and information (short-term, long-term). Tools (Traditional Models & A
	Slide 11
	Slide 12: AI Agents: Advantages of AI Agents
	Slide 13: Agentic AI solution
	Slide 14: Simple reflex agents Designed to operate based on direct responses to environmental conditions. Follow predefined rules, known as condition-action rules, to make decisions without considering past experiences or future consequences. Reflex ag
	Slide 15: Model-based reflex agents More advanced version of the simple reflex agent. While it still relies on condition-action rules to make decisions, it also incorporates an internal model of the world. This model helps the agent track the current st
	Slide 16: Goal-based agents Extends the capabilities of a simple reflex agent by incorporating a proactive, goal-oriented approach to problem-solving. Goal-based agents consider their ultimate objectives and use planning and reasoning to choose actions
	Slide 17: Utility-based agents A utility-based reflex agent goes beyond simple goal achievement by using a utility function to evaluate and select actions that maximize overall benefit. Utility-based agents consider a range of possible outcomes and assi
	Slide 18: Learning agents A learning agent improves its performance over time by adapting to new experiences and data. Learning agents continuously update their behavior based on feedback from the environment. This allows them to enhance their decision
	Slide 19: Requirements dictate design, and the Reference Architecture provides the blueprint.
	Slide 20: Agentic AI Architectures
	Slide 21: Single agent vs Multi agent trade-offs
	Slide 22
	Slide 23
	Slide 24: AI Agent protocols
	Slide 25: Challenges in Agentic AI Design
	Slide 26: Lets get our hands dirty
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: How many enterprise grade agentic applications have you seen?
	Slide 39: Agents to production challenge
	Slide 40
	Slide 41: Core concepts
	Slide 42: Kiro process
	Slide 43: Kiro best practices
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Tips & tricks
	Slide 54: Key takeaways
	Slide 55
	Slide 56: Icons downloaded from https://www.flaticon.com/

