. o g

X

The\world goes crazy
v té,AI agents

»‘,
'\

f
TS
i
é’?
L (.

Pavol Jesensky CIC Slovakia

EMEA AIOPS SME pjesensk@sk.ibm.com @pjesensk
AWS practice lead

T

mailto:pjesensk@sk.ibm.com

Have you already
created or worked
with Al agent?

Game: Agent, assistant or automation?

Dynamic Pricing on a flight booking website that changes the ticket cost every few hours based on real-time demand,
competitor prices, and remaining seats.

Email Spam Filter that automatically moves any email containing a known malicious URL or a specific, pre-defined set of
keywords to the junk folder.

An Internal HR Chatbot that allows an employee to ask, "How many vacation days do | have left?" and instantly pulls the
exact number from the HR database and displays it.

Smart Reply in your email app that suggests three short, one-click response options ("Sounds good!", "I'm busy that day,"
"Can we reschedule?") based on the content of the incoming message.

Autonomous Trading Bot that monitors the stock market 24/7, analyzes complex trend patterns, and executes buy or sell
orders based on its own predictive models to meet a long-term profit goal.

A "Plan My Trip" Feature where you input "Find a 3-day trip to Paris next month" and the system provides a curated
itinerary including flight, hotel, and activity suggestions, all of which require you to click "Book" or "Confirm."

The brain

Traditional Al Models Foundational Models (FMs) Large Language Models (LLMs)

Specific, narrow task (e.g., image General-purpose tasks; adaptation via Specialized type of FM, focused on human-like
Focus/Goal e

classification, simple regression). fine-tuning (e.g., text, vision, code). language understanding and generation.

Small to moderate, task-specific, labeled | Massive, diverse, unlabeled datasets

. Massive text and code datasets.
data. (internet scale).

Training Data

Emergent Abilities (capabilities not
explicitly programmed), zero-shot, few-
shot learning.

Contextual understanding, complex reasoning,
creative text generation, conversation.

High performance on one specific, trained

Capability fack

Typically Transformer architecture (specialized
for sequence data).

Varied (e.g., Decision Trees, SVM, simple

Neural Networks). Typically Transformer architecture.

Architecture

Cost/Scale Relatively low. Very high (computation, data, time). Very high.

Key Takeaway: LLMs are a specialized type of Foundational Model.

Both FMs and LLMs represent a shift towards large, general-purpose models, while Traditional Al models are
built for single, narrow objectives.

<.lli
&

Game: Guess the model type

1. Predicting the next word in an unfinished sentence in any language, trained on nearly all digitized books and internet
text.

2. An engine that classifies an MRI scan as malignant or benign based on millions of pre-labeled medical images.

3. A single model that can describe an image, translate the description into German, and generate a line of Python code
based on the German text.

4. A program that identifies customer emails containing negative sentiment with over 98% accuracy, deployed after a
week of training on a few thousand existing, scored emails.

5. A model that, without any new training, can answer questions about the plot of a newly released movie simply because
its massive training data included the movie's script and reviews.

6. A pre-trained visual model that can recognize a dog in a photo, but is then fine-tuned by a company to specifically
detect only their unique dog-food packaging in store shelf photos.

<.ll

What is Al agent?

Al models are

brain
execution

behind

Al assistants are
reactive,
performing tasks
at your request

Al agents are proactive,
working autonomously to
achieve a specific goal by
any means at their
disposal

An Al agent is a system that
- perceives its environment (through sensors),
- takes actions (through actuators) to achieve goals,

and

- exhibits autonomy and adaptability.

An artificial intelligence (Al) agent is a
system that autonomously performs tasks

by designing workflows with available tools.

It’s more than just a model; it's a
complete system designed to act
purposefully and independently.

<.ll

What is an Al Agent?

The "Perceive-Think-Act” Cycle

Gathers info from
environment (sensors)

. 2. Think

Autonomy & o o Processes,e Goal-Oriente

Adaptability plans, System
7 S reasons

(processes)

/

« Bo

3. Act

Executes actions
(actuators)

Key characteristics of

Al agent

Autonomous:
They can act
independently to

complete tasks based on
their programming and
goals, rather than
requiring constant human
input.

Action-oriented:

They can execute actions,
use tools, and interact
with other systems to
achieve their goals.

Perceptive:

They interact with and
"perceive" their
environment to gather
data and inform their
decisions.

Goal-oriented:

They are designed with
specific objectives in
mind, and they determine
the best course of action
to reach them.

Adaptive and learning:

They can improve their
performance over time
through self-learning and
by reflecting on their
responses.

The Agent's Components

An effective Al agent typically combines these elements:

1.LLM/FM (The Controller): Handles planning, reasoning,
and conversational interface.

2.Memory: Stores past interactions and information (short-
term, long-term).

3.Tools (Traditional Models & APIs): External functions the
agent can call (e.g., a simple sentiment classifier, a search

API, a calendar tool).

<.ll

Components of an Al Agent
The "Brain” & The “Body” / Intaraction Loop

1. The Brain: LLM/FM Controller

2. The Intaraction
Loop

Perceive Environment Act / Execute
© \9} User Input _Actions (Actuators) | —

4.Tools / APls:

Stores past experiences, ﬁ Specialized functions (e.g.,

info Search, Calendar, Databases)

Is Al Agent Turing complete?

An Al agent, particularly a sophisticated one, can
be considered Turing-complete in practice, or at

least capable of simulating a Turing machine.

*LLMs as Universal Function Approximators: Large Language Models
are essentially universal function approximators. With enough
parameters and training data, they can theoretically learn to perform
any computable function.
*Access to Tools: A key aspect of modern Al agents is their ability to
use external tools (APls, code interpreters, databases). These tools
provide the "read/write tape" and the "state transitions" that a Turing
machine needs. For example:
* Code Interpreter: An agent that can write and execute arbitrary
code (Python, etc.) effectively has the power of a Turing machine.
* Memory: The agent's memory (short-term context, long-term
vector databases) acts like a tape, storing and retrieving
information.
* Perception & Action: The perception of new input and the
execution of actions are analogous to reading from and writing to
the tape, and changing the machine's state.

Is an Al Agent Turing Complete?

Simulating a Turing Machine

1. The Brain: LLM/FM
*FM Controller |

=
Q</>

Utilize Tool < />

@ [: - c
= 4 - 4. External Tools
& APIS
3. Memory & | :
Knowledge Base &y,) F?l.rr(;\::gteiosntsaf

Computations

Acts as the Tape:
Stores & Retireves Info —

2 The Control Unit
erceuve -Process-Act Loop
Sensors Actuators

(Output)

(lnput)

Interaction with Environment

Al Agents: Advantages of Al Agents

1. Feedback Mechanisms via Critic Agents and Human-in-

the-Loop
to test and improve responses.

2. Digital Workforce Via Autonomous & Semi-Autonomous In LLM Out
Al Systems
to fully or partially automate business processes with an
appropriate level of agency. Query/ Call/ Read/
Results Response Write

3. Proactive Instead of Reactive, Longer Horizon Tasks in

Addition to Real-Time Interaction
Not just chat, but agents can initiate conversations and Retrieval Memory

: : _ Tools
perform longer running tasks like report compilation or
working entire cases.

Agentic Al solution

<.ll

Planning
Reasoning
Action

1. Planning &
Perception

Interprets Environment,
Defines Steps Steps,

Forecats Future

@q =n"\/

| £%

??

Reasonng Engine
Logical Inference, Problem Solving,
Decision Making

S,

Al Agent Core

3. Goal-Directed
Action

Executes Tasks, Utilzes
Achieves Objectives

@ SoemQ

J
(]
=

Types of Al agents

Simple reflex agents

Designed to operate based on direct responses to
environmental conditions.

Follow predefined rules, known as condition-action
rules, to make decisions without considering past
experiences or future consequences.

Reflex agents apply current perceptions of the
environment through sensors and take action based
on a fixed set of rules.

For example, a thermostat is a simple reflex agent that
turns on the heater if the temperature drops below a
certain threshold and turns it off when the wanted
temperature is reached

Simple reflex agents are effective in structured and
predictable environments where the rules are well-
defined. However, they struggle in dynamic or
complex scenarios that require memory, learning or
long-term planning.

Because they do not store past information, they can
repeatedly make the same mistakes if the predefined
rules are insufficient for handling new situations.

<.lli
&

@ Agent

l/
AN

Condition-action rules

Sensors

|

What the world is like now

/—
— |\ What action I should do now

l

Actuators

Precepts

ﬁ._‘.,,ﬂ

@ OO

Action

Environment

Types of Al agents

Model-based reflex agents

More advanced version of the simple reflex agent.
While it still relies on condition-action rules to make
decisions, it also incorporates an internal model of
the world. This model helps the agent track the
current state of the environment and understand
how past interactions might have impacted it,
allowing it to make more informed decisions.
Model-based reflex agents use their internal model
to reason about the environment's dynamics and
make decisions accordingly.

For instance, a robot navigating a room might not
just react to obstacles in its immediate path but also
consider its previous movements and the locations of
obstacles that it has already passed.

They can handle situations where the context needs
to be remembered and used for future decisions,
making them more adaptable than simpler agents.
However, while model-based agents improve
flexibility, they still lack the advanced reasoning or
learning capabilities required for truly complex
problems in dynamic environments.

<.lli
&

Sensors £

(State

(How the world evolves

What the world is like now)

C What my actions do

(Condition-action rules

T (I

What action I should do now)

|

Actuators @ OO

Precepts

*

Action

)

Environment

Types of Al agents

Goal-based agents

Extends the capabilities of a simple reflex agent by
incorporating a proactive, goal-oriented approach to
problem-solving.

Goal-based agents consider their ultimate objectives and
use planning and reasoning to choose actions that move
them closer to achieving their goals.

These agents operate by setting a specific goal, which
guides their actions. They evaluate different possible
actions and select the one most likely to help them reach
that goal.

For instance, a robot desighed to navigate a building might
have a goal of reaching a specific room. Rather than
reacting to immediate obstacles only, it plans a path that
minimizes detours and avoids known obstacles, based on a
logical assessment of available choices.

It considers future states and their potential impact on
reaching the goal.

They often rely on preprogrammed strategies or decision
trees for evaluating goals.

Goal-based reflex agents are widely used in robotics,
autonomous vehicles and complex simulation systems
where reaching a clear objective is crucial.

<.lli
&

™

Sensors <

What the world is like now

What my actions do

C How the world evolves

:
e
:

o What it will be like 1t I do action A)

C Goals

% (What action I should do now)

Actuators

Precepts

a,_q._ﬂf

Action

OO

Environment

Types of Al agents

Utility-based agents

A utility-based reflex agent goes beyond simple goal
achievement by using a utility function to evaluate and
select actions that maximize overall benefit.
Utility-based agents consider a range of possible
outcomes and assign a utility value to each, helping
them determine the most optimal course of action.
Particularly effective in situations where multiple goals
or tradeoffs are involved.

For example an e-commerce company might employ a
utility-based agent to optimize pricing and recommend
products. The agent evaluates various options, such as
sales history, customer preferences and inventory
levels to make informed decisions on how to price
items dynamically.

Utility-based reflex agents are effective in dynamic and
complex environments, where simple binary goal-
based decisions might not be sufficient.

They help balance competing objectives and adapt to
changing conditions, ensuring more intelligent, flexible
behavior.

<.lli
&

Sensors £

(State

(How the world evolves)—% C What the world is like now

(What my actions do)—%\

— (What it will be like If I do action A]

(Utility

% (How happy I will be in such a state)

(What action I should do now

!

Actuators

OO

Precepts

—@

Action

)

Environment

Types of Al agents

Learning agents

A learning agent improves its performance over time by
adapting to new experiences and data.

Learning agents continuously update their behavior based
on feedback from the environment. This allows them to
enhance their decision-making abilities and perform better
in dynamic and uncertain situations.

Learning agents typically consist of 4 main components:
Performance element: Makes decisions based on a
knowledge base.

Learning element: Adjusts and improves the agent's
knowledge based on feedback and experience.

Critic: Evaluates the agent's actions and provides
feedback, often in the form of rewards or penalties.
Problem generator: Suggests exploratory actions to help
the agent discover new strategies and improve its learning.
For example an agent might explore different strategies,
receiving rewards for correct actions and penalties for
incorrect ones. Over time, it learns which actions maximize
its reward and refine its approach.

Learning agents are highly flexible and capable of handling
complex, ever-changing environments.

<.lli
&

@ Agent

Performance
Standard

(Critic

Z

) «——— Sensors <

Feedback

(Learning element

J Learning goals

fh?ﬂEES

) Performance element)
an “-.|F'dE,E'

Exp-::rlmmt J/

(Problem Generator

Precepts

-0

)J Effectors @ OO

Action

Environment

Requirements dictate design,
and the Reference Architecture
provides the blueprint.

A Reference Architecture reduces the
complexity, cost, and risk of solution
deployment and sets the foundation for
business transformation.

Agentic Al Architectures

Single-agent
architectures

Features a single autonomous entity making
centralized decisions within an environment.
A single Al agent operates independently to
perceive its environment, make decisions and
take actions to achieve a goal.

Key features

Autonomy: The agent operates independently

without requiring interaction with other agents.

Strengths

Simplicity: Easier to design, develop and deploy
compared to multi-agent systems. Requires
fewer resources because it does not need to
manage multiple agents or communication
protocols.

Predictability: Easier to debug and monitor
because the agent operates independently.
Speed: No need for negotiation or consensus-
building among multiple agents.

Cost: Less expensive to maintain and update
compared to complex multi-agent
architectures. Fewer integration challenges
when deployed in enterprise applications.

Weaknesses

Limited scalability: A single agent can become
a bottleneck when handling high-volume or
complex tasks.

Rigidity: Struggles with tasks that require
multistep workflows or coordination across

Multi-agent architectures

Go beyond the Al capabilities of traditional,
single-agent setups.

Agents adapt their roles based on evolving
tasks, helping to ensure flexibility and
responsiveness in dynamic scenarios.
Multi-agent systems are more flexible.

Key features

Hierarchy: Roles are clearly defined.
Centralized communication: Agents report to
the leader.

Strengths

Task efficiency: Ideal for sequential workflows.

Clear accountability: Leader aligns objective.
Weaknesses

Bottlenecks: Leader reliance can slow progress.

Single point of failure: Vulnerable to leader
issues.

Best use cases

Workflow automation: Multistep approvals.
Document generation: Sections overseen by a
leader.

Horizontal Al architectures

Structure

Peer collaboration model: Agents work as
equals in a decentralized system, collaborating
freely to solve tasks.®

Kev features

Reactive
architectures

Reactive architectures map situations directly
to actions. They are reflexive, making decisions
based on immediate stimuli from the
environment rather than drawing on memory
or predictive capabilities. They can’t learn from
the past or plan for the future.

Cognitive
architectures

Cognitive architectures

An advanced Al system that mimics human-like
thinking, reasoning, learning and decision-
making.

These agents incorporate elements of
perception, memory, reasoning and adaptation,
each represented by individual modules,
enabling them to operate in complex, uncertain
environments while improving over time. This is
the most advanced type of agentic architecture.

Deliberative
architectures

A deliberative architecture is an Al system that
makes decisions based on reasoning, planning
and internal models of the world. Unlike
reactive agents, deliberative agents analyze
their environment, predict future outcomes
and make informed choices before acting.

BDI
architecture

This architecture models human-like reasoning
in a BDI agent, with:

Beliefs (B): The agent's knowledge of the world
Desires (D): The agent's goals or objectives
Intentions (1): The course of action that the
agent commits to in order to achieve its desires

https://www.ibm.com/think/topics/agentic-architecture#f6

Single agent vs Multi agent trade-offs

Pros:

Single agent

Cons:

Multi agent

1. Lower and more predictable runtime cost. 1. Increasing and less predictable runtime cost since the number of LLM invocations increase and
, . is not fully deterministic.
2. Lower latency for time critical systems.
. . . 2. Increasing latency especially for parts of workflows that cannot be parallelized due to
3. Low implementation complexity. sequencing of LLM calls.
3. Increasing implementation complexity where it is often harder to anticipate and evaluate the
impact of changes to the solution.
Cons: Pros:
1. Zero shot accuracy/quality limited by 1. Significant empirical evidence that the accuracy/quality of multi agent systems outperforms
performance of selected model. single agent zero shot solutions.
2. Less flexible for implementation of complex 2. Scales to automation of sophisticated workflows with state memory and human in the loop to

workflows.

support complex business processes.

Start simple and increase complexity when needed.

Structure of Multi-agent Systems

Leader

Followers

Followers

a. Equi-level structure b. Hierarchical structure ¢. Nested structure

 Combines equi-level and hierarchical

* Agents operate at the same hierarchical e Consists of leaders and followers. structures

level. * Leaders guide and plan; followers ' :

, , ,) Complex tasks broken into sub-tasks
* Collaborate or negotiate without a execute instructions.
, , _ . , managed by sub-systems.
centralized leader. * Used in scenarios requiring coordinated .
o _ * Interplay between hierarchy and peer-to-

e Shared responsibilities and collective efforts.

. . peer interaction.
decision-making.

Multiagent patterns

Agents
Action
e N
.-'/
Human | ¢------ | LLM Call
R\‘am 7
L Feedback

Stop

Environment

Workflow Pass

In > LLM Call 1 —_—) Gate |

Output1

Fail
Parallelization

> | LLMcalll | —

/y

/7 N

In > LLMCall2 | —> | Aggregator

e 9 Py

%\l. 5 j:

—> | LLMCall3 —

Orchestrator .--> | LLMCall1

In > Orchestrator tmmm————— LLM Call 2

~-> | LLMCall 3

Evaluator - Optimizer Solution
,-f/‘*\““\(
,/; \'_}J
s LLM Call LLM Call
Generator Evalvator
f?\w/ P
Rejected +

Feedback

LLM Call 2

Exit

Out

.,
“~
-
“
i

N\

______ - -.)

o
o
-

Accepted

Vv

N
rd

Output 2

Synthesizer

Out

LLM Call 3

N P

> Out

Out

Al Agent protocols

MCP — Model Context protocol

Function: Connecting Agents to the Outside World
(Tools & Data)

Definition: An open standard (developed by
Anthropic) for an Al system (Client) to access external
data sources and tools (Servers).

Key Concept: Standardizes how an agent can "see"
and "use" enterprise data, code, or APIs securely and
reliably.

Impact: Replaces fragmented APl connectors with a
single, universal protocol for tool use, providing real-
time context for better agent decision-making.

A2A — Agent-to-Agent protocol

Function: Agents Talking to Agents (Interoperability &
Teamwork)

Definition: An open protocol (developed by Google)
enabling autonomous Al agents, built on diverse frameworks
and platforms, to communicate and coordinate tasks.

Key Concept: Allows agents to collaborate on long-running,
complex workflows without needing to expose their internal
memory or code.

Impact: Creates a multi-agent ecosystem where specialized
agents can be composed into powerful "crews" to solve
problems that no single agent could handle (e.g., a
"Researcher Agent" delegating a query to a "Data Analyst
Agent").

24

Challenges in Agentic Al

Design

Coordination & Collaboration ¢
Challenge: Ensuring agents
communicate effectively,
understand shared goals, and
efficiently divide tasks. Poor
coordination leads to duplication
of work or, worse, task failure.
Risk: Inefficient resource use and
delays.

Conflict Resolution #*
Challenge: Agents with
competing objectives (or different
interpretations of the same
objective) may actively work
against each other.

Risk: Deadlocks, system
instability, and unintended
adversarial behavior.

Emergent Behavior
Challenge: Unexpected, complex
behaviors that arise from the
interaction of many simple agent
rules. The system as a whole
behaves in a way that wasn't
explicitly programmed.

Risk: Unpredictability, making
debugging and verification
extremely difficult.

Ethical Considerations
Challenge: Agents may exhibit
bias, make unfair decisions, or
prioritize efficiency over ethical
compliance when operating in
real-world systems (e.g., hiring,
lending).

Mitigation Need: Clear ethical
guidelines and "value alighment"
in the training and planning
phases.

Safety & Control @

Challenge: The autonomous
nature of agents means they can
execute unintended actions at
high speed and scale. This
includes resource consumption,
infinite loops, and irreversible
real-world actions.

Mitigation Need: Robust
Guardrails, Human-in-the-Loop
(HIL), and protocol-based limits

Transparency & Explainability
(XAI) ?

Challenge: Understanding why an
agent made a particular decision,
especially when that decision
involved complex reasoning or
collaboration with other agents.
Risk: Difficulty in auditing failures
and maintaining trust in the
system.

25

Lets get our hands dirty

Frameworks overview

Open Source Frameworks Commercial Platforms
 Microsoft Frameworks e Amazon Bedrock Agents
o Enterprise framework Semantic Kernel Celonis AgentC — integrated with Microsoft Copilot
o Research framework Autogen, Magentic-One (based on Studio, watsonx Orchestrate, Amazon Bedrock Agents,
Autogen) CrewAl
« CAMEL e Google Vertex Al Agents
e CrewAl Microsoft Copilot Studio (was Power Virtual Agents)
* LangGraph * OCI Generative Al Agents
 Llamalndex Agents & Workflows plus [lama_deploy (was e Salesforce Agentforce 2.0 (was Einstein Copilot)
lama_agents) SAP Al Agents in Joule
* Mosaic Al Agent Framework and Mosaic Al Agent * ServiceNow Agents
Evaluation watsonx Orchestrate

* Spring Al Agentic Patterns
 phidata

https://gofastmcp.com/getting-started/welcome

FastMCP handles all the complex protocol details so you
can focus on building.

In most cases, decorating a Python function is all you need
— FastMCP handles the rest.

%~ Fast: High-level interface means less code and faster
development

& Simple: Build MCP servers with minimal boilerplate

n

! Pythonic: Feels natural to Python developers

@, Complete: Everything for production — enterprise
auth (Google, GitHub, Azure, AuthO, WorkOS), deployment
tools, testing frameworks, client libraries, and more

Core components:

‘« Tools: Tools are the core building blocks that allow your
LLM to interact with external systems, execute code, and
access data that isn’t in its training data. In FastMCP, tools
are Python functions exposed to LLMs through the MCP
protocol.

B Resources: Resources represent data or files that an
MCP client can read, and resource templates extend this
concept by allowing clients to request dynamically
generated resources based on parameters passed in the URI.

=1

Prompts: Prompts are reusable message templates that
nelp LLMs generate structured, purposeful responses.

28

https://gofastmcp.com/getting-started/welcome
https://gofastmcp.com/getting-started/welcome
https://gofastmcp.com/getting-started/welcome

m https://github.com/crewAllnc/crewAl

Fast and Flexible Multi-Agent Automation
Framework

Crew Flows
more agency finer precision

@ v

Task

Agent

Agent Task
NIEME

Final Outcome

https://github.com/crewAIInc/crewAI

https://www.gutenberg.org

https://github.com/palkokec/gutread

Project Gutenberg is a library of over 75,000 free
eBooks

Choose among free epub and Kindle eBooks, download
them or read them online. You will find the world's great
literature here, with focus on older works for which U.S.
copyright has expired. Thousands of volunteers digitized
and diligently proofread the eBooks, for you to enjoy.

30

https://github.com/palkokec/gutread
https://www.gutenberg.org/

ol ALYys.

% Crew: crew
- [Task: get_schema (ID: 59d34b97-1T277-496a-91T4-c9e8b182b3T8)
Status: Executing Task...

£ Agent Started
Agent: Guttenberg advisor

Task: get the database schema using the get_schema tool

% Crew: crew

- [Task: get_schema (ID: 59d34b97-1T277-496a-91T4-c9e8b182b3T8)

% Crew: crew

- [Task: get_schema (ID: 59d34b97-1T277-496a-911T4-c9e8b182b3T8)
Status: Executing Task...

— N\, Used get_schema (1)

— & Thinking. ..

. Agent Tool Execution
Agent: Guttenberg advisor
Thought: Action: get_schema

Using Tool: get_schema

Tool Output

-- PostgreSQL database dump

\restrict blYxXJa28dfKyAHMmIdz2e0SvdlZ5hVvMdwL1zAlcXccwBBg8zHVXSTL JKwaCW3

-- Dumped from database version 15.14 (Debian 15.14-8+debl2ul)
-- Dumped by pg_dump version 15.14 (Debian 15.14-8+debl2ul)

SET statement timeout = @

SET lock timeout = @:

SET idle in_transaction_session_timeout = @;

SET client_encoding = "UTF8’,

SET standard_conforming_strings = on,

SELECT pg_catalog.set_config('search_path', '', false),
SET check function bodies = false:

SET xmloption = content;

SET client_min_messages = warning,

SET row_security = off,

SET default_tablespace = '',

SET default_table_access_method = heap;

Agent: LUTTENDEI]Q advlsol
Tool Args:

% Crew: crew

1 Task: get_schema

Assigned to: Guttenberg advisor
Status: « Completed

N Used get_schema (1)

[Task: sql_search (ID: 923affef-7a7e-4ef4-8b3b-c65d4e54a6Te)
Status: Executing Task...

L & Thinking. ..

£ Agent Started

Agent: Guttenberg advisor

Task:

Use the database schema from task 1 to construct a SQL query that answers this question:
'Please provide me all the books by author Moody'.

Use like clause and case 1nsensitive string comparison rather then strict equal in where clause 1n sgl statement.
Then, execute the gquery using the 'sgl_search' tool.

INFO: 127.9.0.1:51884 - "POST /fmcp HTTP/1.1" 100 OK

AQENT. GUTTENDEXg advlsor
Thought: Action: sqgl_search

Using Tool: sgl_search

Tool Input

{
"guery": "SELECT T2.title FROM author AS T1 INNER JOIN author_ebook AS T3 ON Tl.id = T3.author_id INNER JOIN ebook

AS T2 ON T3.ebook_id = T2.1id WHERE LOWER(T1l.name) LIKE LOWER('%Moody%');"
}

Tool Output

[[["Moody's Anecdotes And Illustrations\r\nRelated in his Revival Work by the Great Evangelist"],["That Gospel Sermon
on the Blessed Hope"],["The Way to God and How to Find It"],["Sovereign Grace: Its Source, Its Nature and Its
Effects"],["Men of the Bible"],["Sowling and Reaping"],["To The Work! To The Work! Exhortations to Christians"],["The
Overcoming Life, and Other Sermons"],["Moody's Stories: Being a Second Volume of Anecdotes, Incidents, and
Illustrations"], ["Welghed and Wanting: Addresses on the Ten Commandments"],["Secret Power, or, The Secret of Success
in Christian Life and Work"], ["Wondrous Love, and other Gospel addresses"],["Pleasure & Profit in Bible

Study"], ["Bible Characters"],["Prevalling Prayer: What Hinders It?"],["Junius Unmasked\r\nOr, Thomas Palne the author
of the Letters of Junius and the Declaration of Independence"],["Historical records of the Buffs, East Kent Regiment
(3rd Foot) : 3b Formerly designated the Holland Regiment and Prince George of Denmark's Regiment"],["The Rallroad
Builders: A Chronicle of the Welding of the States"],["Gloucester Moors and Other Poems"],["The Falith Healer: A Play
in Three Acts"],["Backwoods Surgery & Medicine"], ["Edaville Railroad : $b The Cranberry Belt"],["Index to Library
Reports"], ["Dwight L. Moody: Hanen elamansa ja valkutuksensa"]],["title"]]

&2 Agent Started

Agent: Guttenberg advisor

Task:
From the given array of results construct nice list of author, book name and brief summary description maximum 15@

charatcers.

% Crew: crew

— [] Task: get_schema

Assigned to: Guttenberg advisor

Status: Completed

- * Used get_schema (1)

— [] Task: sgl_search
Assigned to: Guttenberg advisor
Status: v Completed
L * Used sgl_search (1)

— [] Task: format_answer
Assigned to: Guttenberg advisor
Status: « Completed

v Agent Flnal Answer

Agent: Guttenberg advisor

Final Answer:

. . B o g | . . — m

oo o EE TR R A R R T
Name: cIew
ID: Seedeca-th99-4161-aeel-1888e2c9889d
Tool Args:
Final Output: * **Author**: D.L. Moody
Book Name: Moody's Anecdotes And Illustrations
Summary: Related 1n his Revival Work by the Great Evangelist.

* *Author**: Unknown
Book Name: That Gospel Sermon on the Blessed Hope
Summary: A gospel sermon discussing the blessed hope.

* *Author**: Unknown
Book Name: The Way to God and How to Find It
Summary: A gulde on finding the way to God.

* **Aauthor**: Unknown
Book Name: Soverelgn Grace
Summary: Its Source, Its Nature and Its Effects.

* o **Author™*: Unknown
Book Name: Men of the Bilble
Summary: A study of various men from the Bible.

* *Author**: Unknown
Book Name: Sowlng and Reaplng
Summary: Discusses the principles of sowlng and reaping.

* **Author**: Unknown

STRANDS

AGENTS https://strandsagents.com/latest

Strands Agents is a simple-to-use, code-first framework for
bUIIdlng agents. Agentic loop

E Invoke model
Strands Agents is an open source SDK that takes a model-driven voke | /—\’
approach to building and running Al agents in just a few lines of m - ‘\/

Get response, reasoning, tool selection

code. Strands scales from simple to complex agent use cases, \

and from local development to deployment in production.
{

Execute tool

final

Strands simplifies agent development by embracing the response Return result
capabilities of state-of-the-art models to plan, chain thoughts,
call tools, and reflect

(/
0

https://github.com/strands-agents/docs/blob/main/docs/examples/python/weather forecaster.md

37

https://strandsagents.com/latest/
https://github.com/strands-agents/sdk-python
https://github.com/strands-agents/docs/blob/main/docs/examples/python/weather_forecaster.md
https://github.com/strands-agents/docs/blob/main/docs/examples/python/weather_forecaster.md
https://github.com/strands-agents/docs/blob/main/docs/examples/python/weather_forecaster.md

How many enterprise
grade agentic applications
have you seen?

Agents to production challenge

I'm sure you’ve been there: prompt, prompt, prompt, and you have a working application.
It’s fun and feels like magic. But getting it to production requires more. What assumptions
did the model make when building it? You guided the agent throughout, but those
decisions aren’t documented. Requirements are fuzzy and you can’t tell if the application
meets them. You can’t quickly understand how the system is desighed and how that
design will affect your environment and performance. Sometimes it’s better to take a step
back, think through decisions, and you’ll end up with a better application that you can
easily maintain. That’s what Kiro helps you do with spec-driven development.

39

o B@U@@ https://kiro.dev/

An Al IDE that helps you deliver from
concept to production through a
simplified developer experience for

working with Al agents. Kiro is great at cl;:li
‘vibe coding’ but goes way beyond of

that—Kiro’s strength is getting those specs
prototypes into production systems
with features such as specs and hooks.

40

https://kiro.dev/

Core concepts

D=
D=
D=

Kiro specs

are artifacts that prove useful anytime you need to
think through a feature in-depth, refactor work that
needs upfront planning, or when you want to
understand the behavior of systems—in short, most
things you need to get to production. Requirements
are usually uncertain when you start building, which
is why developers use specs for planning and clarity.
Specs can guide Al agents to a Dbetter
implementation in the same way.

Kiro hooks

act like an experienced developer catching things you
miss or completing boilerplate tasks in the
background as you work. These event-driven
automations trigger an agent to execute a task in the
background when you save, create, delete files, or on
a manual trigger.

41

Kiro process

Requirements

Implementation

Kiro best practices

1, Security First: Always add sensitive files to .gitignore. Never commit environment keys, secrets, or sensitive
configuration files. Kiro's steering files help enforce these practices across your team. Ask Kiro in natural language:

Identify any sensitive/secret/config/env files from #codebase and also add all

these files to project's .gltignore

¢ Stay Current: Always use the latest package versions and npm. Kiro helps you maintain up-to-date dependencies

automatically.

- Avoid File Proliferation: When working on changes and iterations, avoid the underlying Claude model creating

multiple files with suffixes like fixed, clean, new, etc. Kiro's approach keeps your codebase clean and organized.

4 Leverage MCP Servers: Always use MCP servers for AWS services and refer to existing markdown files for context.

Don't create new markdown files - refer to the same context using MCP servers like Context7 and AWS Labs MCP server

for AWS docs.

43

Autopilot Mode: Maximum Velocity

Complete Code Implementation - Watch as Kiro
transforms ideas into working code in seconds

*Rapid Iteration - Slash development time by eliminating
back-and-forth approvals

Maximum Efficiency - Focus on the big picture while
Kiro handles implementation details

For my Al Compliance Auditor project, Autopilot mode
was perfect for implementing the foundational
components: data models, Lambda functions, and
infrastructure code.

Supervised Mode: Collaborative
Control

*Request Approval - Before making changes, Kiro presents
its plan and waits for explicit approval

*Show Detailed Steps - See exactly what actions Kiro
intends to take

*Maintain Full Control - Accept or reject proposed changes
with convenient buttons

| used Supervised Mode for critical components like the
policy engine and Bedrock intelligent prompt caching
configurations, where | wanted to review every change.

44

Hi, | would like to build simple agentic app
with crewai and fastmcp to search the web for
tractor parts by parts name.

® & 90 &

C @ shop.marting.sk/zetor-50-super

[t ZE1UK, FUKIERKA, FRUAIIVIA,

LKT - PREVODOVKA,
PODVOZOK, BRZDY, KURENIE,
KABINA ...

KOMPLETNE VLOZENE VALCE -
VALCOVE JEDNOTKY A ICH
KOMPONENTY

SADY TESNEN(SPALOVACICH
MOTOROV A PREVODOVIEK,
OSTATNE PLOCHE TESNENIA

HYDRAULIKA
HADICE

SADY TESNENI
HYDRAULICKYCH PRVKOV PRE
STAVEBNE STROJE

VSTREKOVACIE TRYSKY,
ELEMENTY, CERPADLA A
OSTATNE USTROJENSTVO

PIESTNE KRUZKY
PNEUMATIKY

STARTOVACIE AKUMULATORY
SZNAJDER

TMELY A LEPIDLA HENKEL -
LOCTITE - TEROSON

KLZNE LOZISKA - PANVICKY,
PUZDRA

FILTRE

GUFERA - RADIALNE
HRIADELOVE TESNENIA PRE
MOBILNU TECHNIKU

V7D OVE KOMPRESOR

(S105.0473)
Vyrobca: EU

Katalég. Cislo: S105.0473
Doba dodania: SKLADOM

6,55 € (bez DPH)
8,06 € (s DPH)

CU-krazok pod vstrekovaé
10x20 (S17.0920, 93-
3630, 0681188,
34098709)

Vyrobca: CZ

Katalég. ¢islo: 96.33

Doba dodania: SKLADOM

0,20 € (bez DPH)
0,25 € (s DPH)

Vyrobca: EU

Kataldg. €islo: $105.0355
Doba dodania: MOMENTALNE
NEDOSTUPNE

26,59 € (bez DPH)
32,71 € (s DPH)

Y

Element EB 8 Pf Z50
(S98.0483, 6041019)

Vyrobca: EU
Kataldg. Cislo: 6041019
Doba dodania: SKLADOM

27,90 € (bez DPH)
34,32 € (s DPH)

(S105.4813)
Vyrobca: EU

Katalég. ¢islo: S105.4813
Doba dodania: SKLADOM

259,88 € (bez DPH)
319,65 € (s DPH)

Hadica gumova
(S105.4827)

Kataldg. ¢islo: 06-S105.4827
Doba dodania: SKLADOM

2,28 € (bez DPH)
2,74 € (s DPH)

predcisticom (S17.1041,
$105.1040)

Vyrobca: EU

Kataldg. ¢islo: S17.1041

Doba dodania: MOMENTALNE
NEDOSTUPNE

71 ,02 € (bez DPH)
87,35 € (s DPH)

Hriadel kl'ukovy Z50
(s170204)

Vyrobca: EU

Kataldg. ¢islo: S17.0204

Doba dodania: MOMENTALNE
NEDOSTUPNE

372,96 € (bez DPH)
458,74 € (s DPH)

45

T O

'k
w7

an
[0

v SPECS
@ tractor-parts-search

v AGENT HOOKS

Automate repetitive tasks with smart
triggers

v AGENT STEERING

Guide agent behavior and responses

Generate Steering Docs

v MCP SERVERS

Connect external tools and data sources

yecs > tractor-parts-search > ¥ requirements.md > @9 # Requirements Document

=] Spec: tractor-parts-search 1

1

Requirements 2 Design

Requirements Document
Introduction

This document outlines the requirements for a
tractor parts search application that uses CrewAl
for agent orchestration and FastMCP for web
search capabilities. The system will allow users
to search for tractor parts by name and retrieve
relevant information from web sources.

Glossary

— xkTractor Parts Search Systemxkx: The complete
application that searches for tractor parts
information

— *xk%CrewAl**x: The multi-agent framework used for
orchestrating search agents

— xkFastMCPx*: The Model Context Protocol
implementation used for web search capabilities
— *xSearch Agentxx: An AI agent responsible for
conducting web searches for tractor parts

- *xParts Querysxk: A user-provided search term
specifying the tractor part name

— *xSearch Resultsxk: Structured information
about tractor parts returned from web sources

Requirements
Requirement 1

*kUser Story:*x* As a tractor owner, I want to
search for parts by name, so that I can find

3 Tasklist

o Kiro

I'll help you create a spec for building an
agentic app with CrewAl and FastMCP to
search for tractor parts. Let me start by

creating the requirements document for
this feature.

f|<_]> Created ¥ requirements.md &‘g)

I've created the initial requirements
document for your tractor parts search
application. The requirements cover the core
functionality including:

e Searching for tractor parts by name using
web search

 Using CrewAl for agent orchestration

e Integrating FastMCP for web search
capabilities

e Returning structured search results

 Providing a simple command-line interface

Each requirement follows the EARS (Easy
Approach to Requirements Syntax) format and
Includes specific acceptance criteria that are
measurable and testable.

Do the requirements look good? If so, we
can move on to the design.

Move to design phase

| N

O

Tt

v kiro/specs/tractor-parts-search .kiro > specs > tractor-parts-search > ¥ design.md > @9 # Design Document _ _
Architecture: A layered approach with CLI

¥ design.md : .
=] Spec: tractor-parts-search 1 Requirements 2 Design 3 Tasklist Interface, application layer, CrewAl agents,

¥ requirements.md

G

C&

Design Document
Overview

The Tractor Parts Search System is a Python-based
application that leverages CrewAI for multi-agent
orchestration and FastMCP for web search
capabilities. The system provides a command-1line
interface for users to search for tractor parts
by name and receive structured results from web
sources.

Architecture

The system follows a layered architecture with
clear separation of concerns:

CLI Interface

Application Layer

CrewAI Agents

FastMCP Integration

Web Search APIs

Key Components:

and FastMCP integration
Key Components:

e CLI interface for user interaction

 CrewAl agents (Search Coordinator and
Web Search Agent) for task orchestration

e FastMCP integration for web search
capabilities

» Result processing and caching systems

Data Models: Structured classes for
PartResult, SearchQuery, and AgentResponse

Error Handling: Comprehensive strategy with
retry logic, graceful degradation, and clear
user feedback

Testing Strategy: Unit, integration, and
performance testing approaches

The design leverages CrewAl's multi-agent
capabilities to coordinate searches efficiently
while using FastMCP to access web search
functionality. The system includes caching
for performance and robust error handling
for reliability.

Does the design look good? If so, we can
move on to the implementation plan.

Move to implementation plan

d

T O

'k
w7

an
HD

v kiro/specs/tractor-parts-search
¥ design.md

¥ requirements.md

¥ tasks.md

.kiro > specs > tractor-parts-search > ¥ tasks.md > @9 # Implementation Plan

=] Spec: tractor-parts-search 1 Requirements

1

H

L

2 Design

Implementation Plan

£7 Start task

- [1 1. Set up project structure and dependencies

— Create Python project structure with proper
package organization

— Set up pyproject.toml with CrewAI, FastMCP,
and other required dependencies

— Create configuration files for environment

variables and settings

— _Requirements: 3.1, 4.1_

£7 Start task

[1 2. Implement core data models and utilities

7 Start task
— [] 2.1 Create data model classes

— Implement PartResult, SearchQuery, and
AgentResponse dataclasses

— Add validation methods and serialization
support

— _Requirements: 2.1, 2.2_

7 Start task
- [1 2.2 Implement cache manager

- Create in-memory cache with TTL support
— Add methods for storing, retrieving, and
cleaning expired entries

— _Requirements: 4.5_

7 Start task
- [1 2.3 Create configuration management

3 Task list

1. Project Setup: Dependencies and
structure

2. Core Models: Data classes and utilities

3. FastMCP Integration: Web search
capabilities

4. CrewAl Agents: Multi-agent orchestration

5. Result Processing: Data aggregation and
formatting

6. Application Controller: Main workflow
coordination

7. CLI Interface: User interaction layer

8. Logging & Monitoring: Observability
features

9. Testing: Comprehensive test coverage
(marked as optional)

10. Packaging: Entry point and deployment

Each task references specific requirements
and builds incrementally on previous tasks.
The testing tasks are marked as optional to
focus on core functionality first.

The current task list marks some tasks
(e.g. unit tests, documentation) as optional
to focus on core features first.

Keep optional tasks (faster MVP)

Make all tasks required (comprehensive from ¢

Waiting on your input... Cancel

an
D

v kiro/specs/tractor-parts-search
¥ design.md

¥ requirements.md

¥ tasks.md

.kiro > specs > tractor-parts-search > ¥ tasks.md > @9 # Implementation Plan

5] Spec: tractor-parts-search 1 Requirements 2 Design 3 Task list

Implementation Plan = -

£7 Start task
3 F [11. Set up project structure and dependencies

- Create Python project structure with proper
package organization

- Set up pyproject.toml with CrewAI, FastMCP,
and other required dependencies

— Create configuration files for environment

variables and settings

— _Requirements: 3.1, 4.1_

£7 Start task
[1 2. Implement core data models and utilities

£7 Start task
— [] 2.1 Create data model classes

— Implement PartResult, SearchQuery, and
AgentResponse dataclasses

— Add validation methods and serialization
support

- Requirements: 2.1, 2.2_

£7 Start task
- [1 2.2 Implement cache manager

— Create in-memory cache with TTL support
— Add methods for storing, retrieving, and
cleaning expired entries

— _Requirements: 4.5_

£7 Start task
- [1 2.3 Create configuration management

Perfect! The spec is now complete with
optional testing tasks to focus on building a
faster MVP.

Your tractor parts search application spec is
ready with:

« ¥ Requirements: 5 user stories with
EARS-compliant acceptance criteria

« ¥ Design: Comprehensive architecture
using CrewAl and FastMCP

o ¥ Tasks: 10 main implementation tasks
with optional testing

You can now begin executing tasks by
opening the tasks.md file and clicking "Start
task" next to any task item. | recommend
starting with task 1 to set up the project
structure and dependencies.

The implementation will create a Python CLI
application that uses CrewAl agents to
coordinate web searches for tractor parts
through FastMCP, with caching and structured
result formatting.

Credits used: 0.95 Elapsed time: 14m 48s

> 3 changes accepted | {53 View all

Revert X

T 0 O

(9]

Ok
&7

AR

D

EXPLORER: KIRO_DEMO (L (3 C @ oo

v .kiro/specs/tractor-parts-search
¥ design.md
¥ requirements.md
¥ tasks.md
> tests
> tractor_parts_search
$.env.example
.gitignore
2 pyproject.toml
G README.md

cC C C C

¥ taskssmd U X @ main.py U .gitignore U @ (5 (D eee

.kiro > specs > tractor-parts-search > ¥ tasks.md > @9 # Implementation Plan

=] Spec: tractor-parts-search 1 Requirements 2 Design

Implementation Plan

() Task in progress | (5 View changes
3 - [-] 1. Set up project structure and dependencies

— Create Python project structure with proper
package organization

— Set up pyproject.toml with CrewAI, FastMCP,
and other required dependencies

- Create configuration files for environment

variables and settings

- Requirements: 3.1, 4.1_

£7 Start task
- [1 2. Implement core data models and utilities

£7 Start task
— [] 2.1 Create data model classes

— Implement PartResult, SearchQuery, and
AgentResponse dataclasses

— Add validation methods and serialization
support

- Requirements: 2.1, 2.2_

£7 Start task
- [1 2.2 Implement cache manager

— Create in-memory cache with TTL support
— Add methods for storing, retrieving, and
cleaning expired entries

— _Requirements: 4.5_

3 Task list

3w Session X

BN S B N el N

' Notifications may include
I icon badges.

¢, Created @ main.py 7 ©

Now let me create a tests directory structure:

f?} Created @ __init__.py &2)

fl<_]> Created @ conftest.py &‘2)

Let me verify the project structure by listing
the directories:

(O Searched workspace

Verify the complete project structure has
been created correctly

Perfect! Now let me verify that the
configuration works correctly by testing it:

Command & x & D

python —c "from tractor_parts_s

The command has been flagged for manual
review. Learn more about how commands are
evaluated for safety.

-

Reject = Trust

Waiting on your input

Command
() Task in progress | (<5 View changes o

3 [-] 1. Set up project structure and dependencies t: {config.fastmcp.endpoint}')"
4 — Create Python project structure with proper ' ']

package organization
5 - Set up pyproject.toml with CrewAI, FastMCP, . .

and other required dependencies zsh: command not found: python
6 — Create configuration files for environment

variables and settings
7 - Requirements: 3.1, 4.1_ Let me try with python3:
8

L7 Start task ' . () Command

9 |— [] 2. Implement core data models and utilities

python3 -c "from tractor_parts_
7 Start task

10 - [1 2.1 Create data model classes
11 — Implement PartResult, SearchQuery, and o ack 1
[=
AgentResponse dataclasses Tra{.:e 2l (mc.:st I‘ECE.‘rth C _ 2k
File "<string>", line 1, 1in <

12 - Add validation methods and serialization
: from tractor_parts_search.c

PROBLEMS OUTPUT TERMINAL ooo C)kiro + v (D T ec0 | {5 X tion loaded successfully'); pri
File "/Users/pjesensk/Downloc
zsh: command not found: python

® pjesensk@Pavols-MacBook-Pro kiro_demo % python3 —c "from tractor par arch/config.py”, line 6, in <mc
ts_search.config import config; print('Configuration loaded successf I ModuleNotFoundError: No module
ully'); print(f'App name: {config.name}'); print(f'FastMCP endpoint:

{config.fastmcp.endpoint}')"
Traceback (most recent call last): i Reject = Trust
File “"<strina=", line 1, in <module> | Waitina an vatir inn it

S O

'k
%7

an
N0

v kiro/specs/tractor-parts-search
¥ design.md
¥ requirements.md
¥ tasks.md
> tests
> tractor_parts_search
$.env.example
.gitignore
> pyproject.toml
i README.md

CcC C C C

PROBLEMS OUTPUT TERMINAL eoco

.kiro > specs > tractor-parts-search > ¥ tasks.md > @9 # Implementation Plan

=] Spec: tractor-parts-search 1 Requirements 2 Design 3 Task list

Implementation Plan

v Task completed | (C) View changes | (T View e»
3 - [x] 1. Set up project structure and dependencies

— Create Python project structure with proper
package organization

— Set up pyproject.toml with CrewAI, FastMCP,
and other required dependencies

— Create configuration files for environment

variables and settings

— Requirements: 3.1, 4.1_

£7 Start task
[1 2. Implement core data models and utilities

£7 Start task
— [1 2.1 Create data model classes

- Implement PartResult, SearchQuery, and
AgentResponse dataclasses
- Add validation methods and serialization

() Kiro + v ([) TaJ eee | () X

If you disable this error, we STRONGLY recommend that you additi ,
onally

pass the '—--user' flag to pip, or set 'user = true' in your pip.
conf

file. Failure to do this can result in a broken Homebrew install
ation. i

Read more about this behavior here: <https://peps.python.org/pep
-0668/>

note: If you believe this is a mistake, please contact your Python i
nstallation or 0S distribution provider. You can override this, at t
he risk of breakina vour Pvthon installation or 0S. bv passina —-bre

o All supporting libraries (pydantic, click,
rich, etc.)

o Development dependencies for testing
and code quality

o Proper Python packaging configuration

Configuration Files:

e .env.example - Template for environment
variables

e tractor_parts_search/config.py -
Comprehensive configuration management
with validation

e .gitignore - Python project gitignore

README.md - Project documentation

Entry Point:

e tractor_parts_search/main.py - CL|
application entry point with Click
framework

The project structure follows Python best
practices and satisfies requirements 3.1 and
4.1 by providing proper organization for
CrewAl agents and FastMCP integration. All
configuration is externalized through
environment variables with sensible defaults.

Credits used: 1.82 Elapsed time: 4m 49s

> 14 changes accepted | U5 View all

Revert X

Tips & tricks

1.Start with the Spec - Never jump straight into coding. Use Kiro's spec workflow to clarify requirements first. You
can also use the free-form chat mode whenever needed for general assistance and vibe coding.

2.Leverage MCP Servers Extensively - The Context7 and AWS Labs MCP servers provide incredible value. Use them
for every AWS related task.

3.Configure Steering Early - Set up your steering files immediately. They dramatically improve Kiro's contextual
understanding.

4.Use Agent Hooks for Repetitive Tasks - Automate git commits, documentation updates, and code quality checks.
5.Mix Autopilot and Supervised Modes - Use Autopilot for foundational work, Supervised for critical components.
6.Keep Tasks Granular - Break down complex features into small, manageable tasks in your tasks.md.

7.1terate on Requirements - Don't be afraid to refine your requirements as you learn more about the problem

space.
8.Reuse your hooks, steering, and reusable prompts - Create reusable templates of your . kiro/hooks/,

.kiro/steering/, and .prompts/ directories to accelerate new project setup.
9.Leverage Natural Language Automation - Use natural language prompts to create your own agent hooks and
agent steering rules to automate everything.

53

Key takeaways

e Agentic Al empowers more autonomous and proactive systems.
eDesign patterns and architectures are crucial for robust and scalable
solutions.

eFrameworks like CrewAl and AWS Strands, combined with strong
orchestration (FastMCP), accelerate development.

eTools like Kiro helps building robust enterprise grade agentic applications

54

55

lcons downloaded from
https://www.flaticon.com/

	Main
	Slide 1: The world goes crazy with AI agents
	Slide 2: Have you already created or worked with AI agent?
	Slide 3: Game: Agent, assistant or automation?
	Slide 4: Key Takeaway: LLMs are a specialized type of Foundational Model. Both FMs and LLMs represent a shift towards large, general-purpose models, while Traditional AI models are built for single, narrow objectives.
	Slide 5: Game: Guess the model type
	Slide 6: What is AI agent?
	Slide 7
	Slide 8: An AI agent is a system that - perceives its environment (through sensors), - takes actions (through actuators) to achieve goals, and - exhibits autonomy and adaptability.
	Slide 9
	Slide 10: An effective AI agent typically combines these elements: LLM/FM (The Controller): Handles planning, reasoning, and conversational interface. Memory: Stores past interactions and information (short-term, long-term). Tools (Traditional Models & A
	Slide 11
	Slide 12: AI Agents: Advantages of AI Agents
	Slide 13: Agentic AI solution
	Slide 14: Simple reflex agents Designed to operate based on direct responses to environmental conditions. Follow predefined rules, known as condition-action rules, to make decisions without considering past experiences or future consequences. Reflex ag
	Slide 15: Model-based reflex agents More advanced version of the simple reflex agent. While it still relies on condition-action rules to make decisions, it also incorporates an internal model of the world. This model helps the agent track the current st
	Slide 16: Goal-based agents Extends the capabilities of a simple reflex agent by incorporating a proactive, goal-oriented approach to problem-solving. Goal-based agents consider their ultimate objectives and use planning and reasoning to choose actions
	Slide 17: Utility-based agents A utility-based reflex agent goes beyond simple goal achievement by using a utility function to evaluate and select actions that maximize overall benefit. Utility-based agents consider a range of possible outcomes and assi
	Slide 18: Learning agents A learning agent improves its performance over time by adapting to new experiences and data. Learning agents continuously update their behavior based on feedback from the environment. This allows them to enhance their decision
	Slide 19: Requirements dictate design, and the Reference Architecture provides the blueprint.
	Slide 20: Agentic AI Architectures
	Slide 21: Single agent vs Multi agent trade-offs
	Slide 22
	Slide 23
	Slide 24: AI Agent protocols
	Slide 25: Challenges in Agentic AI Design
	Slide 26: Lets get our hands dirty
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: How many enterprise grade agentic applications have you seen?
	Slide 39: Agents to production challenge
	Slide 40
	Slide 41: Core concepts
	Slide 42: Kiro process
	Slide 43: Kiro best practices
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Tips & tricks
	Slide 54: Key takeaways
	Slide 55
	Slide 56: Icons downloaded from https://www.flaticon.com/

