
Functional Approach to Natural Language Processing

Ján Kollár, Milan Spišiak and Michal Sičák

The evolution of natural language depends on both interpersonal communication and internal

thinking. In our symbolic and grammatical approach, percepted real world objects are symbolized and

transformed to internal symbols being subjects of reasoning as concepts in human an/or machine

mind.

We present an approximative evaluation of communication speed in human brain as well as the

results of our experiment with the aquisition of voice symbols of natural language. As we will see,

symbolic approach is quite realistic, provided that a human-like representation of memory and

symbols will be developed for machines. Using functional theory of lambda calculus and combinators,

we concentrate in this paper on the principles of the dynamically evolved memory. This memory is

no data store, but rather complex and active supercombinator, containing no redundant parts.

Next, we use grammatical approach to communicated visual objects recognition. Although this task is

not trivial and has many problematic properties, we suppose the grammar abstraction allows us to

get a simpler method for the object recognition. First, we need to figure out how to describe the

objects and then we can apply the method of abstraction to these data. Therefore, we primarily focus

on 3D object description by grammar methods in this paper. In the grammar theory, this step is called

symbolization. The symbolization ensures an object description and provides the fundamental data

abstract layer. As we can see, data abstraction using functional language allows us to abstract and to

process objects easily.

Applicative approach can be used in language processing even when we use context-free grammars.

We show an algorithm that is able to transform any context free grammar into supercombinator

form. The resulting form depends on the form of an input grammar, therefore a new problem arises:

finding the proper grammar for the task at hand. We briefly show the resulting supercombinator

forms of various grammar types and compare their properties. We also compare the algorithm

efficiency in presented grammar cases and show, that our algorithm can be improved in case we use

grammars without any cycles. We also discuss the resulting supercombinator forms in term of

grammar compression and re-usability of elements, that are the end result of processing larger scale

texts as an input samples.

