Evolution of Events in Software Systems

Olga Pestovd, Jan Kollar, and Peter Véclavik

Department of Computers and Informatics
Technical University of Kosice, Letnd 9, 042 00 Kosice, Slovakia

Abstract. The ambition to achieve evolution in the designing phase
of software development is based on the idea that the selection of the
functions (events) can be adapted according some requirements. In this
paper a mechanism based on algebraic relations in evolution model is
introduced. It tries to realize events evolution. The main contribution of
this work is the proposal of the new method.

Key words: Data flow diagrams, events, evolution, functions, pointcuts

1 Introduction

In the field of software engineering the traditional programming style is fading
in the recent years. The traditional approach of software development obeys the
life cycle: analysis - design - implementation - maintenance. The development in
the way of traditional approach can be seen as a continual cycle, started be the
change of the requirements.

The relationship between the requirements and their software implementa-
tion is more complex than just a simple dependency in one or more directions.
The requirements react and change with their realization. In this point of view
the specification and realization of the requirements are inseparable [1]. There-
fore the challenge lies in finding a method, which would help to understand and
support the adaptability and evolution of the software systems according the
input requirements.

The topic of this work is to give some indication on how the access to the
evolution and adaptability can be provided. Moreover, the work attempts to give
some other view on software development.

2 Goals

The goal of this work is to design mechanism based on algebraic relations in evo-
lution model. Based on semantic of pointcut designators (as they are defined in
AspectJ) to identify the pointcuts in evolution model. The mechanism illustrate
on simple example.

2 O. Pestova, J. Kollar, P. Vaclavik
3 Analysis

A new sight on software development brings an aspect oriented programming
[6,4]. This sight mentions on the availability of evolution in the designing phase
of software development. Based on semantic of pointcut designators (as they
are defined in AspectJ [3]) can be in the data flow diagram of the designed
system identified the pointcuts. In this pointcuts are inserted functions (events
[2]). The selection of the functions into the pointcuts can be adapted according
some requirements. In this work it is requirement on run time. It is time, which
the system needed to reached the final state, moving from the beginning state.

To be able to know, if the designed system meets the run time requirement,
the time evaluation for this system must be counted. The method, which is used
for calculating starting and end - time of activities in software management, is
critical path method. This method can be used for acyclic data flow diagrams.
For this characteristic of this method it couldn’t be used for counting the run
time of the system. The data flow diagram of the system may contain a cycle.
Because in the designing phase it is not clear how many times the cycle will be
executed, only one execution of the cycle is considered. If the requirement is not
accomplish for one execution, it could not be accomplish for more executions.

To solve the run time computation, two approaches were considered. The
first one is based on the idea of the cycle compensation by one place (memory
cell [5]) in data flow diagram (Fig. 1). The disadvantage of this method is, that
it will be difficult to write an algorithm to find and replace the cycles.

a)

a 10s

0 , O
b) p #

a 10 10 f
7 ° ™ i O
_/

Fig. 1. Compensation of cycle by one place.

v
A d

The second one is to count the run time by table. This is more easier, because
it is established on simple computation of the table (see table 1).

4

Evolution of Events in Systems 3

Table 1. Table for graf b) form figure 1.

Place Preconditions Time evaluation
a - 0s
b a 10 s
f b 20 s

Solution and Results

4.1 The design of deduction mechanism in evolution model

The ambition to achieve some evolution in the designing phase of software de-
velopment is based on the idea that the selection of the functions (events, which
should be used for the implementation of the system) can be adapted according
some requirements. A deduction mechanism has been designed to reach this goal.
This mechanism works with run time (time, which need the system to reach the
final state, moving from the beginning state) requirement. This mechanism is in-
spired by biological evolution. From the generated variants of solution (designed
by this mechanism) are selected only the ones, that accomplish the compliance
with the requirement. From them is selected the best one. The mechanism is
described in follow steps:

1.

©w

10.
11.
12.

For the designed system a data flow diagram (desribing the flow of data in
this system) is designed.

Then the file of functions (representsenting the events in the designed sys-
tem) is created.

In the data flow diagram the pointcuts are identified.

Then the pointcuts are devided according the number of transfers, oriented
into this pointcut.

The functions from input file are devided according the number of arguments,
too.

A check must be run, to determine whether a compatible group of functions
exists for each group of pointcuts. For example: for the group of pointcuts,
where only one transfer is oriented inside, a group of functions with only one
agument is considered compatible.

Number of members is counted for each group of pointcuts and group of
functions.

All combinations (how can be functions inserted into compatible pointcuts)
are generate for each group of pointcuts.

Accordingly the combinations variants of realization (of the designed system)
are generated.

The max run time value is choosed. This time is the upper limit.

The begining marking is inserted.

According to the next algorithm the time evaluation for each variant is cal-
culated.

(a) The table for each variant is created.

4 O. Pestova, J. Kollar, P. Vaclavik

(b) The time evaluation calculation is started with table item, which all
of its preconditions have been marked. If such item doesn’t exist, the

calculation is stoped.

(¢) In the next step, items, whose all preconditions have marking or some

value are calculated. If such item doesn’t exist, the calculation is stoped.

13. The generated variants are divided into the group of usable or unusable

according to the results form step 12. The variant with the shortest run
time is choosen, assuming this run time does not exceed the limit.

The figure 2 shows the example of this mechanism on the design of the system,

which should realize a simple mathematical expression (1).

—((axb) —¢)

F1abc=a*b-c:
{) »O F2abc=-(a"b)+c:

pomy pom,, F3pom, =-pom,;
F4 pomy = pomy;
pom,

pointcut

functions with 3 arguments @ ,
F1 abc=a*b-c;

a
O\ Data flow diagram Functions
b
A
O—4%
v
c
a
b TTA
>
v
C

20s

Fpabc=-(a*b)+c for'pbint- cut with 3 inputs: exist

__ for point - cut with 1 input - exist

functions with 1 argument e
1 F,pom,=-pomg; _—"

2 F4 pom, =pomy, 5
number of point - cuts with 3 inputs: 4 number of functions with 3 inputs: 2
number of point - cuts with 1 input: 1 number of functions with 1 input: 2

all combinations: 1',1-,21,2

[9]

a

Fiabc=a"b-g Fqpom, =-pom,;

O

o

DO!’TI.]

o

c

355

DOI’TI1

anbc:—(a‘b}ﬂz;

F3D0I’TI1 =-pom,;

DOH"I

>O

Qi
Q/ z
Oi
"o

Evolution of Events in Systems 5

>

DOm1

()

DOm

F4 pormq = pormy;

Ng

DOI’TI1

>O

Fgabc--a b)+c; 22

. 8‘F1ab<::a‘tcn-c; Fy pomy = pomy;

Place Preconditions Time eveluation "

A
a o GO0

b j
b Os c pomy pom,,
c 12
i abc Fiabc=a*b-c Fgpom, =-pomy; 20 s
pom,, pomy Foabc=-(a*b)+e F4 pomy = pomy;
Place Preconditions Time eveluation P|§g/ Preconditions Time eveluatioﬁ
a Ols a 0s /
b ols b : os |
£ M c - 0s /
pom, ab,c 205+05 :_JJ_O_L a,b,c 20 5/
pom,, pomy pom,, W.205+ 10s=30s

the best one is variant12 - 30 s

Fig. 2. Example shows mechanism on the design of the system, which should realize a

simple mathematical expression —((a * b) —

5 Acknowledgment

c)

This work is the result of the project implementation: Development of the Center
of Information and Communication Technologies for Knowledge Systems (ITMS

project code: 26220120030) supported by the Research & Development Opera-
tional Program funded by the ERDF.

6 O. Pestova, J. Kollar, P. Vaclavik

6 Conclusion

The goal of this work was to design mechanism established on algebraic rela-
tions in evolution model. Based on semantic of pointcut designators (as they are
defined in AspectJ) to identify the pointcuts in evolution model.

The method provides some advantages. In the implementation phase it is
clear, whether the specified requirements can be reached. Secondary, some partial
automation may be brought into the software development process.

There are also some disadvantages consider. Some of the generated variants
are not the realization of the system. With growing number of functions and
pointcuts, the time needed for generating all variants grows. Therefore the ap-
plication of this method is effective for small systems only. This disadvantages
might be improved by the next research.

References

1. Anlauff Matthias, Pavlovic Dusko, Smith R. Douglas: Composition and Refinement
of Evolving Specifications. In: Kestrel Institute, Palo Alto, California 94304, USA.
, 26-29 Nov. 2001, pp. 157-165

2. Hudék Stefan: Rozsirenia Petriho sieti. Habilitacnd praca. Vysokd sskola technicks
v Kosiciach. Elektrotechnicka fakulta. Kosice, 1980. 107 p.

3. Kicyale Gregor, Hilsdale Erik, Hugunin Jim, Kersten Mik, Palm Jeffrey, Griswold
G. William: An Overview of AspectJ. Department of Computer Science, University
of British Columbia, Vancouver, 2005, 354 p.

4. Kollar Jan: Structural Proposition for Aspect Oriented Software Evolution. Pro-
ceedinds of 7-th International Scientific Conference ECI’2006, Kosice - Herlany,
Sep. 20-22, 2006, pp. 180-185

5. Kollar Jdn, Novitzkd Valerie: Semantical Equivalence of Process Functional and
Imperative Programs. Acta Polytechnica Hungarica, Vol. 1, No. 2, 2004, pp. 113~
124

6. Kollar Jan, Téth Marcel: An Experiment with Aspect Programming Language.
Proceedings of 3-rd Slovakian-Hungarian Joint Symposium on Applied Machine
Intelligence, Herlany, Slovakia, Jan 21-22, 2005, pp. 225-235

